19 research outputs found

    Molecular biomarkers in current management of metastatic colorectal cancer

    No full text
    Over the past two decades, the treatment outcomes in metastatic colorectal cancer (mCRC) have been remarkably improved, largely from the evolution of systemic therapy. Also, the molecular biomarkers have played a major role in this improvement by their predictive value in current treatment paradigm in mCRC. Currently, extended RAS mutation analysis is required for consideration of anti-epidermal growth factor receptor therapy in patients with mCRC. Several uncommon gene alterations have emerged as the potential targets for their matched molecular targeted therapy. Although, most patients with mCRC do not derive benefit from immunotherapy. By using microsatellite instability or mismatch repair test, we are now able to identify a small subgroup of patients with mCRC who have a very good response to immune checkpoint inhibitors. With the increasing number of required biomarkers in mCRC management, multiplex gene panel testing is now replacing single gene testing strategy. In patients accessible to matched molecular targeted therapy, especially for clinical trials, the comprehensive genomic profiling might be the preferred testing method. Although, it is potentially benefit in mCRC treatment, the liquid biopsy is not yet clinically applicable. The optimal utilization of molecular biomarker testing is required for best treatment outcomes in individual patients

    Safety Following COVID-19 Booster Vaccine with BNT162b2 Compared to mRNA-1273 in Solid Cancer Patients Previously Vaccinated with ChAdOx1 or CoronaVac

    No full text
    Safety data following the COVID-19 booster mRNA vaccine in solid cancer patients are scarce. We prospectively evaluated adverse events after a booster dose of the BNT162b2 vaccine as compared to the mRNA-1273 vaccine in solid malignancy patients who had previously received two doses of ChAdOx1 or heterogenous CoronaVac/ChAdOx1. Data regarding solicited and unsolicited adverse events were collected using questionnaires. The primary endpoint was the difference in incidence and severity of adverse events between BNT162b2 and mRNA-1273 vaccines. A total of 370 subjects were enrolled, including 172 (47%) and 198 (54%) patients receiving booster doses of BNT162b2 and mRNA-1273 vaccines, respectively. The overall incidence of adverse events in the two groups was comparable (BNT162b2 vs. mRNA-1273; 63% vs. 66%, p = 0.6). There was no significant difference in severity, and the majority of adverse events reported were classed as mild to moderate. Tenderness at the injection site was the only reaction that had a statistically higher reported incidence after the mRNA-1273 vaccine than after the BNT162b2 vaccine (56% vs. 41%, p = 0.003). In conclusion, a booster dose of the mRNA vaccine, either BNT162b2 or mRNA-1273, in solid cancer patients previously vaccinated with ChAdOx1 and CoronaVac appears safe, and no new safety concerns were observed

    Safety Following COVID-19 Booster Vaccine with BNT162b2 Compared to mRNA-1273 in Solid Cancer Patients Previously Vaccinated with ChAdOx1 or CoronaVac

    No full text
    Safety data following the COVID-19 booster mRNA vaccine in solid cancer patients are scarce. We prospectively evaluated adverse events after a booster dose of the BNT162b2 vaccine as compared to the mRNA-1273 vaccine in solid malignancy patients who had previously received two doses of ChAdOx1 or heterogenous CoronaVac/ChAdOx1. Data regarding solicited and unsolicited adverse events were collected using questionnaires. The primary endpoint was the difference in incidence and severity of adverse events between BNT162b2 and mRNA-1273 vaccines. A total of 370 subjects were enrolled, including 172 (47%) and 198 (54%) patients receiving booster doses of BNT162b2 and mRNA-1273 vaccines, respectively. The overall incidence of adverse events in the two groups was comparable (BNT162b2 vs. mRNA-1273; 63% vs. 66%, p = 0.6). There was no significant difference in severity, and the majority of adverse events reported were classed as mild to moderate. Tenderness at the injection site was the only reaction that had a statistically higher reported incidence after the mRNA-1273 vaccine than after the BNT162b2 vaccine (56% vs. 41%, p = 0.003). In conclusion, a booster dose of the mRNA vaccine, either BNT162b2 or mRNA-1273, in solid cancer patients previously vaccinated with ChAdOx1 and CoronaVac appears safe, and no new safety concerns were observed

    Immunogenicity after a Third COVID-19 mRNA Booster in Solid Cancer Patients Who Previously Received the Primary Heterologous CoronaVac/ChAdOx1 Vaccine

    No full text
    No data regarding the efficacy of a third mRNA vaccine for solid cancer patients previously primed with the heterologous CoronoVac/ChAdOx1 vaccination implemented in Thailand during the shortage of vaccine supply are available. Forty-four cancer patients who previously received the heterologous CoronaVac-ChAdOx1 regimen were boosted with a third mRNA COVID vaccine, either BNT162b2 or mRNA-1273. Anti-RBD IgG was measured immediately before, two weeks after, and four weeks after the third dose. The antibody response was compared to 87 age- and gender-matched cancer patients who were primed with the homologous ChAdOx1/ChAdOx1 regimens. Post-third dose anti-RBD IgG levels significantly increased compared to pre-third dose levels. There was no statistical difference in post-third dose antibody titers or neutralization levels between these two primary series regimens. Treatment with chemotherapy was associated with a lower antibody response compared to endocrine therapy/biologics. Similar antibody levels were observed after a third booster with either BNT162b2 or mRNA-1273 following heterologous CoronaVac/ChAdOx1 vaccination. There was no statistical difference in the immune response following the third-dose vaccination between cancer patients and healthy individuals who received the same heterologous CoronaVac/ChAdOx1 vaccination. In conclusion, a similar degree of enhanced immunogenicity was observed after a third mRNA COVID-19 vaccination in solid cancer patients who previously received the heterologous CoronaVac/ChAdOx1 regimens

    Vaccine-Related adverse events following AZD1222 (ChAdOx1-nCoV-19) Covid-19 vaccine in solid malignancy patients receiving cancer treatment, as compared to age-matched healthy controls

    No full text
    The study aimed to evaluate vaccine-related adverse events (VRAEs) following ChAdOx1-nCoV-19 vaccine in solid cancer patients receiving treatment compared to healthy controls. 399 cancer patients and 90 healthy volunteers were enrolled. In the overall population, the incidence of VRAEs was significantly lower in cancer patients than in healthy volunteers (57% vs 80%, P < .001). Because the mean age of the cancer patients was higher than the healthy volunteers (59 vs 48 years, P < .001), we analyzed age-matched comparison and found that there was no significant difference of VRAEs between two groups (74% vs 79%, P .32). Most VRAEs were of mild severity in both groups. The most common local VRAE was pain at the injection site in both groups, and the most common systemic VRAE was fatigue in the cancer cohort, while myalgia was the most common VRAE among the healthy controls. In the cancer cohort, fever was the only VRAE that led to interruption of the cancer treatment (in two cases). Among the cancer treatment types, patients undergoing chemotherapy-containing regimens had a lower likelihood of experiencing VRAEs. In summary, the overall incidence of VRAEs following ChAdOx1-nCoV-19 vaccine in actively treated cancer patients was comparable to healthy controls after adjusting for age. The VRAEs that occurred rarely interfered with the cancer treatment. These findings substantiate that vaccination with AZD1222 is safe in cancer patients undergoing treatment
    corecore