1 research outputs found

    āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļąāđˆāļ‡āļ™āđ‰āļģāļŦāļ™āļąāļāļŠāļ™āļīāļ”āļ”āļīāļˆāļīāļ—āļąāļĨāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļĢāļ°āļšāļļāļŠāļ™āļīāļ”āļœāļąāļāđāļĨāļ°āļœāļĨāđ„āļĄāđ‰āļ”āđ‰āļ§āļĒāđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđ€āļŠāļīāļ‡āļĨāļķāļ Digital Weighing Scale with Fruit and Vegetable Identification Using Deep Learning Technique

    No full text
    āļāļēāļĢāļŠāļąāđˆāļ‡āļ™āđ‰āļģāļŦāļ™āļąāļāđ€āļ›āđ‡āļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļāđˆāļ­āļ™āļ—āļĩāđˆāļˆāļ°āļ™āļģāļœāļąāļāđāļĨāļ°āļœāļĨāđ„āļĄāđ‰āļšāļĢāļĢāļˆāļļāļŦāļĩāļšāļŦāđˆāļ­āđ€āļžāļ·āđˆāļ­āļ‚āļēāļĒāđƒāļ™āļ‹āļđāđ€āļ›āļ­āļĢāđŒāļĄāļēāļĢāđŒāđ€āļāđ‡āļ• āļžāļ™āļąāļāļ‡āļēāļ™āļˆāļ°āļ™āļģāļŠāļīāļ™āļ„āđ‰āļēāđ€āļžāļ·āđˆāļ­āļŠāļąāđˆāļ‡āļ™āđ‰āļģāļŦāļ™āļąāļāļšāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļąāđˆāļ‡āļ”āļīāļˆāļīāļ—āļąāļĨāđāļĨāļ°āļ›āđ‰āļ­āļ™āļĢāļŦāļąāļŠāļŠāļīāļ™āļ„āđ‰āļē āļˆāļēāļāļ™āļąāđ‰āļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļˆāļ°āđāļŠāļ”āļ‡ āļŠāļ·āđˆāļ­āļŠāļīāļ™āļ„āđ‰āļē āļĢāļēāļ„āļē āđāļĨāļ°āļ™āđ‰āļģāļŦāļ™āļąāļ āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄāļ‚āđ‰āļ­āļœāļīāļ”āļžāļĨāļēāļ”āļˆāļ°āđ€āļāļīāļ”āļˆāļēāļāļāļēāļĢāļ›āđ‰āļ­āļ™āļĢāļŦāļąāļŠāļŠāļīāļ™āļ„āđ‰āļēāļœāļīāļ” āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ āđ€āļžāļ·āđˆāļ­āļžāļąāļ’āļ™āļēāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļąāđˆāļ‡āļ”āļīāļˆāļīāļ—āļąāļĨāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļ™āļģāđ€āļ‚āđ‰āļēāļ‚āđ‰āļ­āļĄāļđāļĨāļ āļēāļžāļˆāļēāļāļāļĨāđ‰āļ­āļ‡āđ€āļžāļ·āđˆāļ­āļāļēāļĢāļĢāļ°āļšāļļāļ›āļĢāļ°āđ€āļ āļ—āļœāļąāļāđāļĨāļ°āļœāļĨāđ„āļĄāđ‰āđāļ—āļ™āļāļēāļĢāļ›āđ‰āļ­āļ™āļĢāļŦāļąāļŠāļŠāļīāļ™āļ„āđ‰āļē āļĢāļ°āļšāļšāļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ āļšāļ­āļĢāđŒāļ”āļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒāļĢāļēāļŠāđ€āļšāļ­āļĢāļĢāļĩāđˆāļžāļēāļĒ āļāļĨāđ‰āļ­āļ‡ Pi V2.1 āđ€āļžāļ·āđˆāļ­āļāļēāļĢāļ™āļģāđ€āļ‚āđ‰āļēāļ‚āđ‰āļ­āļĄāļđāļĨāļ āļēāļž āđ‚āļŦāļĨāļ”āđ€āļ‹āļĨāļĨāđŒāļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļŠāļąāđˆāļ‡āļ™āđ‰āļģāļŦāļ™āļąāļ āđ‚āļĄāļ”āļđāļĨāļ•āļąāļ§āđāļ›āļĨāļ‡āļŠāļąāļāļāļēāļ“āđāļ­āļ™āļ°āļĨāđ‡āļ­āļāđ€āļ›āđ‡āļ™āļ”āļīāļˆāļīāļ—āļąāļĨ HX-711 āđāļĨāļ°āļˆāļ­āļŠāļ™āļīāļ”āļŠāļąāļĄāļœāļąāļŠ āđ‚āļ›āļĢāđāļāļĢāļĄāļžāļąāļ’āļ™āļēāđ‚āļ”āļĒāļ āļēāļĐāļēāđ„āļžāļ˜āļ­āļ™ āđāļĨāļ°āļ­āļąāļĨāļāļ­āļĢāļīāļ—āļķāļĄ YOLOv3-tiny āđƒāļŠāđ‰āđ‚āļ”āļĒāđ„āļĨāļšāļĢāļēāļĢāļĩ Darknet āđ€āļžāļ·āđˆāļ­āļŠāļĢāđ‰āļēāļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āđ€āļžāļ·āđˆāļ­āļāļēāļĢāļĢāļđāđ‰āļˆāļģāļ āļēāļžāļ”āđ‰āļ§āļĒāđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđ€āļŠāļīāļ‡āļĨāļķāļ āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļĢāļ°āļšāļš āļœāļąāļāđāļĨāļ°āļœāļĨāđ„āļĄāđ‰ 5 āļŠāļ™āļīāļ”āļ–āļđāļāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļāļķāļāļŠāļ­āļ™āđāļšāļšāļˆāļģāļĨāļ­āļ‡ āļĢāļđāļ›āļ āļēāļžāđƒāļ™āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļŠāļ­āļ™ āļ„āļ·āļ­ āļāļĨāđ‰āļ§āļĒ 196 āļ āļēāļž āđāļ„āļĢāļ­āļ— 144 āļ āļēāļž āļ­āļ‡āļļāđˆāļ™ 123 āļ āļēāļž āļŦāļ­āļĄāļŦāļąāļ§āđƒāļŦāļāđˆ 210 āļ āļēāļž āđāļĨāļ° āļĄāļ°āđ€āļ‚āļ·āļ­āđ€āļ—āļĻ 204 āļ āļēāļž āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļŠāļĢāđ‰āļēāļ‡āļ‚āļķāđ‰āļ™āđ‚āļ”āļĒāļāļēāļĢāļŠāļ­āļ™ 15,000 āļĢāļ­āļš āļĄāļĩāļ„āđˆāļēāļāļēāļĢāļŠāļđāļāđ€āļŠāļĩāļĒāđ€āļ‰āļĨāļĩāđˆāļĒāđ€āļ—āđˆāļēāļāļąāļš 0.1623 āđāļĨāļ°āļĄāļĩāļ„āđˆāļē āļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģ, āļ„āļ§āļēāļĄāļˆāļģ āđāļĨāļ° F1-score āļ„āļ·āļ­ 1.00, 0.99 āđāļĨāļ° 0.99 āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļˆāļēāļāļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡ āļĢāļ°āļšāļšāļŠāļēāļĄāļēāļĢāļ–āļĢāļ°āļšāļļ āļāļĨāđ‰āļ§āļĒ āđāļ„āļĢāļ­āļ— āļ­āļ‡āļļāđˆāļ™āđāļĨāļ°āļŦāļ­āļĄāļŦāļąāļ§āđƒāļŦāļāđˆ āļ”āđ‰āļ§āļĒāļ„āđˆāļēāļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģ 100% āļ–āđ‰āļēāļ§āļēāļ‡āļœāļąāļāļŦāļĢāļ·āļ­āļœāļĨāđ„āļĄāđ‰āđ‚āļ”āļĒāđ„āļĄāđˆāļĄāļĩāļāļēāļĢāļ‹āđ‰āļ­āļ™āļāļąāļ™ āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄāļ­āļēāļˆāđ€āļāļīāļ”āļ„āļ§āļēāļĄāļœāļīāļ”āļžāļĨāļēāļ” āļŦāļēāļāļœāļąāļāļŦāļĢāļ·āļ­āļœāļĨāđ„āļĄāđ‰āļĄāļĩāļāļēāļĢāļ‹āđ‰āļ­āļ™āļāļąāļ™ āļ„āđˆāļēāļœāļīāļ”āļžāļĨāļēāļ”āđƒāļ™āļāļēāļĢāļŠāļąāđˆāļ‡āļ™āđ‰āļģāļŦāļ™āļąāļāļ‚āļ­āļ‡āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļąāđˆāļ‡āļ™āđ‰āļģāļŦāļ™āļąāļāļ—āļĩāđˆāļžāļąāļ’āļ™āļēāļ‚āļķāđ‰āļ™āļĄāļĩāļ„āđˆāļēāļ™āđ‰āļ­āļĒāļāļ§āđˆāļē 10 āļāļĢāļąāļĄWeighing is a process before packing fruits and vegetables for sale in supermarkets. A staff will put the product to be weighed on the digital scale and enter the product code. After that the machine will display product name, price, and weight. However, error might occur from entering the wrong product code. This research aims to develop digital weighing scale that an image data is imported from the camera to identify the types of fruits and vegetables instead of entering the product code. The system consists of Raspberry Pi computer board, Pi camera V2.1 for image acquisition, load cell for weighing, HX-711 analog to digital converter module and a touch screen. Software is developed by Python version 3 and the YOLOv3-tiny algorithm is used through the Darknet library to build a model for image recognition. For testing the system, five types of fruit and vegetable were used to train the model. The pictures in training process included 379 pictures of banana, 277 pictures of carrot, 232 pictures of grape and 443 pictures of onion. The model was built by 15000 epochs of training with 0.1623 of an average loss value and the values of precision, recall and F1-score are 1.00, 0.99 and 0.99 respectively. From the experimental results, the system can identify banana, carrot, grape and onion with 100% accuracy when fruits or vegetables are placed without overlapping. However, error may occur if fruit or vegetable are overlapping. The weighing error of the developed weighing scale is less than 10 grams
    corecore