140 research outputs found

    Prediction of continuous B-cell epitopes in an antigen using recurrent neural network

    Get PDF
    B-cell epitopes play a vital role in the development of peptide vaccines, in diagnosis of diseases, and also for allergy research. Experimental methods used for characterizing epitopes are time consuming and demand large resources. The availability of epitope prediction method(s) can rapidly aid experimenters in simplifying this problem. The standard feed-forward (FNN) and recurrent neural network (RNN) have been used in this study for predicting B-cell epitopes in an antigenic sequence. The networks have been trained and tested on a clean data set, which consists of 700 non-redundant B-cell epitopes obtained from Bcipep database and equal number of non-epitopes obtained randomly from Swiss-Prot database. The networks have been trained and tested at different input window length and hidden units. Maximum accuracy has been obtained using recurrent neural network (Jordan network) with a single hidden layer of 35 hidden units for window length of 16. The final network yields an overall prediction accuracy of 65.93% when tested by fivefold cross-validation. The corresponding sensitivity, specificity, and positive prediction values are 67.14, 64.71, and 65.61%, respectively. It has been observed that RNN (JE) was more successful than FNN in the prediction of B-cell epitopes. The length of the peptide is also important in the prediction of B-cell epitopes from antigenic sequences. The webserver ABCpred is freely available at www.imtech.res.in/raghava/abcpred/

    Prediction of neurotoxins based on their function and source

    Get PDF
    We have developed a method NTXpred for predicting neurotoxins and classifying them based on their function and origin. The dataset used in this study consists of 582 non-redundant, experimentally annotated neurotoxins obtained from Swiss-Prot. A number of modules have been developed for predicting neurotoxins using residue composition based on feed-forwarded neural network (FNN), recurrent neural network (RNN), support vector machine (SVM) and achieved maximum accuracy of 84.19%, 92.75%, 97.72% respectively. In addition, SVM modules have been developed for classifying neurotoxins based on their source (e.g., eubacteria, cnidarians, molluscs, arthropods have been and chordate) using amino acid composition and dipeptide composition and achieved maximum overall accuracy of 78.94% and 88.07% respectively. The overall accuracy increased to 92.10%, when the evolutionary information obtained from PSI-BLAST was combined with SVM module of source classification. We have also developed SVM modules for classifying neurotoxins based on functions using amino acid, dipeptide composition and achieved overall accuracy of 83.11%, 91.10% respectively. The overall accuracy of function classification improved to 95.11%, when PSI-BLAST output was combined with SVM module. All the modules developed in this study were evaluated using five-fold cross-validation technique. The NTXpred is available at www.imtech.res.in/raghava/ntxpred/ and mirror site at http://bioinformatics.uams.edu/mirror/ntxpred

    BTXpred: prediction of bacterial toxins

    Get PDF
    This paper describes a method developed for predicting bacterial toxins from their amino acid sequences. All the modules, developed in this study, were trained and tested on a non-redundant dataset of 150 bacterial toxins that included 77 exotoxins and 73 endotoxins. Firstly, support vector machines (SVM) based modules were developed for predicting the bacterial toxins using amino acids and dipeptides composition and achieved an accuracy of 96.07% and 92.50%, respectively. Secondly, SVM based modules were developed for discriminating entotoxins and exotoxins, using amino acids and dipeptides composition and achieved an accuracy of 95.71% and 92.86%, respectively. In addition, modules have been developed for classifying the exotoxins (e.g. activate adenylate cyclase, activate guanylate cyclase, neurotoxins) using hidden Markov models (HMM), PSI-BLAST and a combination of the two and achieved overall accuracy of 95.75%, 97.87% and 100%, respectively. Based on the above study, a web server called 'BTXpred' has been developed, which is available at http://www.imtech.res.in/raghava/btxpred/. Supplementary information is available at http://www.imtech.res.in/raghava/btxpred/supplementary.html

    DEK-Forecaster: A Novel Deep Learning Model Integrated with EMD-KNN for Traffic Prediction

    Full text link
    Internet traffic volume estimation has a significant impact on the business policies of the ISP (Internet Service Provider) industry and business successions. Forecasting the internet traffic demand helps to shed light on the future traffic trend, which is often helpful for ISPs decision-making in network planning activities and investments. Besides, the capability to understand future trend contributes to managing regular and long-term operations. This study aims to predict the network traffic volume demand using deep sequence methods that incorporate Empirical Mode Decomposition (EMD) based noise reduction, Empirical rule based outlier detection, and KK-Nearest Neighbour (KNN) based outlier mitigation. In contrast to the former studies, the proposed model does not rely on a particular EMD decomposed component called Intrinsic Mode Function (IMF) for signal denoising. In our proposed traffic prediction model, we used an average of all IMFs components for signal denoising. Moreover, the abnormal data points are replaced by KK nearest data points average, and the value for KK has been optimized based on the KNN regressor prediction error measured in Root Mean Squared Error (RMSE). Finally, we selected the best time-lagged feature subset for our prediction model based on AutoRegressive Integrated Moving Average (ARIMA) and Akaike Information Criterion (AIC) value. Our experiments are conducted on real-world internet traffic datasets from industry, and the proposed method is compared with various traditional deep sequence baseline models. Our results show that the proposed EMD-KNN integrated prediction models outperform comparative models.Comment: 13 pages, 9 figure

    Bcipep: A database of B-cell epitopes

    Get PDF
    BACKGROUND: Bcipep is a database of experimentally determined linear B-cell epitopes of varying immunogenicity collected from literature and other publicly available databases. RESULTS: The current version of Bcipep database contains 3031 entries that include 763 immunodominant, 1797 immunogenic and 471 null-immunogenic epitopes. It covers a wide range of pathogenic organisms like viruses, bacteria, protozoa, and fungi. The database provides a set of tools for the analysis and extraction of data that includes keyword search, peptide mapping and BLAST search. It also provides hyperlinks to various databases such as GenBank, PDB, SWISS-PROT and MHCBN. CONCLUSION: A comprehensive database of B-cell epitopes called Bcipep has been developed that covers information on epitopes from a wide range of pathogens. The Bcipep will be source of information for investigators involved in peptide-based vaccine design, disease diagnosis and research in allergy. It should also be a promising data source for the development and evaluation of methods for prediction of B-cell epitopes. The database is available at

    Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In past number of methods have been developed for predicting subcellular location of eukaryotic, prokaryotic (Gram-negative and Gram-positive bacteria) and human proteins but no method has been developed for mycobacterial proteins which may represent repertoire of potent immunogens of this dreaded pathogen. In this study, attempt has been made to develop method for predicting subcellular location of mycobacterial proteins.</p> <p>Results</p> <p>The models were trained and tested on 852 mycobacterial proteins and evaluated using five-fold cross-validation technique. First SVM (Support Vector Machine) model was developed using amino acid composition and overall accuracy of 82.51% was achieved with average accuracy (mean of class-wise accuracy) of 68.47%. In order to utilize evolutionary information, a SVM model was developed using PSSM (Position-Specific Scoring Matrix) profiles obtained from PSI-BLAST (Position-Specific Iterated BLAST) and overall accuracy achieved was of 86.62% with average accuracy of 73.71%. In addition, HMM (Hidden Markov Model), MEME/MAST (Multiple Em for Motif Elicitation/Motif Alignment and Search Tool) and hybrid model that combined two or more models were also developed. We achieved maximum overall accuracy of 86.8% with average accuracy of 89.00% using combination of PSSM based SVM model and MEME/MAST. Performance of our method was compared with that of the existing methods developed for predicting subcellular locations of Gram-positive bacterial proteins.</p> <p>Conclusion</p> <p>A highly accurate method has been developed for predicting subcellular location of mycobacterial proteins. This method also predicts very important class of proteins that is membrane-attached proteins. This method will be useful in annotating newly sequenced or hypothetical mycobacterial proteins. Based on above study, a freely accessible web server TBpred http://www.imtech.res.in/raghava/tbpred/ has been developed.</p

    Electrodeposition Fabrication of Chalcogenide Thin Films for Photovoltaic Applications

    No full text
    Electrodeposition, which features low cost, easy scale-up, good control in the composition and great flexible substrate compatibility, is a favorable technique for producing thin films. This paper reviews the use of the electrodeposition technique for the fabrication of several representative chalcogenides that have been widely used in photovoltaic devices. The review focuses on narrating the mechanisms for the formation of films and the key factors that affect the morphology, composition, crystal structure and electric and photovoltaic properties of the films. The review ends with a remark section addressing some of the key issues in the electrodeposition method towards creating high quality chalcogenide films

    Lithium Ionic Conductivity and Stability Of Cubic Li7La3Zr2O12 Solid Electrolyte A First-Principles Study

    No full text
    Garnet structured cubic LLZO crystal (Li56La24Zr16O96) is one of the most promising solid electrolytes for next-generation solid-state lithium-ion batteries. Ab initio molecular dynamics simulations have been employed to study the impacts of lithium vacancy defect and doping concentration on the lithium ionic conductivity and stability of LLZO. The number of lithium atoms in a unit cell of LLZO has been reduced from 56 to 53, where 56 lithium atoms represent the structure of stoichiometric LLZO, i.e., Li7La3Zr2O12. Similarly, the effect of Al and Ga doping on the conductivity and stability of LLZO material was also investigated. Our computational results confirm that both the defects help in enhancing the conductivity of LLZO and the concentration of defect introduced controls the trade-off between the conductivity and stability. Overall, this study provides a valuable insight into the enhancement of conductivity of cubic LLZO garnet material along with structural stability

    A Status Review on Cu2ZnSn(S, Se)4-Based Thin-Film Solar Cells

    No full text
    Photovoltaics has become a significant branch of next-generation sustainable energy production. Kesterite Cu2ZnSn(S, Se)4 (copper-zinc-tin-(sulfur, selenium) or CZTS(Se)) is considered one of the most promising, earth-abundant, and nontoxic candidates for solar energy generation over the last decade. However, shallow phase stability of the quaternary phase and the presence of various secondary phases and defects are the main hindrances in achieving the target device performance. This paper summarizes various approaches to synthesize the CZTS absorber layer and the CdS n-type material layer. Besides, different CZTS solar cell device structures, as well as a comprehensive review of secondary phases and defects, have been illustrated and discussed. At last, this review is intended to highlight the current challenges and prospects of CZTS solar cells
    • …
    corecore