7 research outputs found

    Investigating a clinically actionable BRAF mutation for monitoring low-grade serous ovarian cancer: a case report

    No full text
    Low-grade serous ovarian cancer (LGSOC) poses a specific clinical challenge due to advanced presentation at diagnosis and the lack of effective systemic treatments. The aim of this study was to use a precision medicine approach to identify clinically actionable mutations in a patient with recurrent LGSOC. Primary, metastatic and recurrence tissue, and blood samples were collected from a stage IV LGSOC patient. Single-gene testing for clinically actionable mutations (BRAF V600, KRAS and NRAS) and subsequent whole-exome sequencing (WES) were performed. Droplet digital PCR was used to evaluate the presence of an identified BRAF D594G mutation in the matched plasma cell-free DNA (cfDNA). No clinically actionable mutations were identified using single-gene testing. WES identified a BRAF D594G mutation in six of seven tumor samples. The patient was commenced on a MEK inhibitor, trametinib, but with minimal clinical response. A newly designed ddPCR assay detected the BRAF alteration in the matched tissues and liquid biopsy cfDNA. The identification and sensitive plasma detection of a common “druggable” target emphasises the impact of precision medicine on the management of rare tumors and its potential contribution to novel monitoring regimens in this field

    Master transcription regulators and transcription factors regulate immune-associated differences between patients of African and European ancestry with colorectal cancer

    No full text
    BACKGROUND AND AIMS: Individuals of African (AFR) ancestry have a higher incidence of colorectal cancer (CRC) than those of European (EUR) ancestry and exhibit significant health disparities. Previous studies have noted differences in the tumor microenvironment between AFR and EUR patients with CRC. However, the molecular regulatory processes that underpin these immune differences remain largely unknown.  METHODS: Multiomics analysis was carried out for 55 AFR and 456 EUR patients with microsatellite-stable CRC using The Cancer Genome Atlas. We evaluated the tumor microenvironment by using gene expression and methylation data, transcription factor, and master transcriptional regulator analysis to identify the cell signaling pathways mediating the observed phenotypic differences. RESULTS: We demonstrate that downregulated genes in AFR patients with CRC showed enrichment for canonical pathways, including chemokine signaling. Moreover, evaluation of the tumor microenvironment showed that cytotoxic lymphocytes and neutrophil cell populations are significantly decreased in AFR compared with EUR patients, suggesting AFR patients have an attenuated immune response. We further demonstrate that molecules called “master transcriptional regulators” (MTRs) play a critical role in regulating the expression of genes impacting key immune processes through an intricate signal transduction network mediated by diseaseassociated transcription factors (TFs). Furthermore, a core set of these MTRs and TFs showed a positive correlation with levels of cytotoxic lymphocytes and neutrophils across both AFR and EUR patients with CRC, thus suggesting their role in driving the immune infiltrate differences between the two ancestral groups.  CONCLUSION: Our study provides an insight into the intricate regulatory landscape of MTRs and TFs that orchestrate the differences in the tumor microenvironment between patients with CRC of AFR and EUR ancestry.</p

    Aetiology and severity of childhood pneumonia in primary care in Malawi: a cohort study

    Get PDF
    Objective To determine the aetiology of community acquired pneumonia in children presenting to primary care in Northern Malawi, and to ascertain predictors for identification of children requiring hospitalisation. Design The BIOmarkers TO diagnose PnEumonia study was a prospective cohort study conducted from March to June 2016. Setting Primary care in Northern Malawi. Patients 494 children aged 2 –59 months with WHO defined pneumonia. Main outcome(s) and measure(s) Number of children with bacterial infection identified and the sensitivity/ specificity of WHO markers of severity for need for hospitalisation. Results 13 (2.6%) children had a bacterium consistent with pneumonia identified. A virus consistent with pneumonia was identified in in 448 (90.7%) of children. 56 children were admitted to hospital and two children died within 30 days. 442 (89.5%) received antibiotic therapy. Eleven children (2.6%) had HIV. WHO severity markers at baseline demonstrated poor sensitivity for the need for hospitalisation with a sensitivity of 0.303 (95% CI 0.188 to 0.441) and a specificity 0.9 (95% CI 0.868 to 0.926). A prediction rule to indicate the need for hospitalisation was developed. Conclusions and relevance The low rate of bacterial infection and high use of antibiotics in the setting of high immunisation rates highlights the changing profile of childhood pneumonia. Similarly, the markers of need for hospitalisation may have changed in the setting of extended immunisation. Further studies are required to examine thi

    A functional genomic screen identifies the deubiquitinase USP11 as a novel transcriptional regulator of ERa in breast cancer

    No full text
    Approximately 70% of breast cancers express estrogen receptor α (ERα) and depend on this key transcriptional regulator for proliferation and differentiation. While patients with this disease can be treated with targeted antiendocrine agents, drug resistance remains a significant issue, with almost half of patients ultimately relapsing. Elucidating the mechanisms that control ERα function may further our understanding of breast carcinogenesis and reveal new therapeutic opportunities. Here, we investigated the role of deubiquitinases (DUB) in regulating ERaα in breast cancer. An RNAi loss-offunction screen in breast cancer cells targeting all DUBs identified USP11 as a regulator of ERα transcriptional activity, which was further validated by assessment of direct transcriptional targets of ERα. USP11 expression was induced by estradiol, an effect that was blocked by tamoxifen and not observed in ERα-negative cells. Mass spectrometry revealed a significant change to the proteome and ubiquitinome in USP11-knockdown (KD) cells in the presence of estradiol. RNA sequencing in LCC1 USP11-KD cells revealed significant suppression of cell-cycle-associated and ERα target genes, phenotypes that were not observed in LCC9 USP11-KD, antiendocrine-resistant cells. In a breast cancer patient cohort coupled with in silico analysis of publicly available cohorts, high expression of USP11 was significantly associated with poor survival in ERα-positive (ERα+) patients. Overall, this study highlights a novel role for USP11 in the regulation of ERα activity, where USP11 may represent a prognostic marker in ERa+ breast cancer. Significance: A newly identified role for USP11 in ERα transcriptional activity represents a novel mechanism of ERα regulation and a pathway to be exploited for the management of ER-positive breast cancer

    The genomics of colorectal cancer in populations with African and European ancestry

    No full text
    Black people have a higher incidence of colorectal cancer and worse survival rates when compared with white people. Comprehensive genomic profiling was performed in 46,140 colorectal adenocarcinoma cases. Ancestry-informative markers identified 5,301 patients of African descent (AFR) and 33,770 patients of European descent (EUR). AFR were younger, had fewer microsatellite instability-high (MSI-H) tumors, and had significantly more frequent alterations in KRAS, APC, and PIK3CA. AFR had increased frequency of KRAS mutations, specifically KRASG12D and KRASG13. There were no differences in rates of actionable kinase driver alterations (HER2, MET, NTRK, ALK, ROS1, and RET). In patients with young-onset colorectal cancer ( Significance: KRAS (particularly KRASG12D/G13), APC, and PIK3CA were more frequently altered in AFR who had a lower frequency of MSI-H tumors. There were no differences in actionable kinase driver alterations. In young-onset colorectal cancer, both ancestries had a similar frequency of MSI-H/TMB-H tumors, but strikingly different trends in APC. See related commentary by Eng and Holowatyj, p. 1187. This article is highlighted in the In This Issue feature, p. 1171.</p

    Predictive modelling of response to neoadjuvant therapy in HER2+ breast cancer

    No full text
    HER2-positive (HER2+) breast cancer accounts for 20–25% of all breast cancers. Predictive biomarkers of neoadjuvant therapy response are needed to better identify patients with early stage disease who may benefit from tailored treatments in the adjuvant setting. As part of the TCHL phase-II clinical trial (ICORG10–05/NCT01485926) whole exome DNA sequencing was carried out on normal-tumour pairs collected from 22 patients. Here we report predictive modelling of neoadjuvant therapy response using clinicopathological and genomic features of pre-treatment tumour biopsies identified age, estrogen receptor (ER) status and level of immune cell infiltration may together be important for predicting response. Clonal evolution analysis of longitudinally collected tumour samples show subclonal diversity and dynamics are evident with potential therapy resistant subclones detected. The sources of greater pre-treatment immunogenicity associated with a pathological complete response is largely unexplored in HER2+ tumours. However, here we point to the possibility of APOBEC associated mutagenesis, specifically in the ER-neg/HER2+ subtype as a potential mediator of this immunogenic phenotype

    Transcriptome characterization of matched primary breast and brain metastatic tumors to detect novel actionable targets.

    No full text
    Background: Breast cancer brain metastases (BrMs) are defined by complex adaptations to both adjuvant treatment regimens and the brain microenvironment. Consequences of these alterations remain poorly understood, as does their potential for clinical targeting. We utilized genome-wide molecular profiling to identify therapeutic targets acquired in metastatic disease.Methods: Gene expression profiling of 21 patient-matched primary breast tumors and their associated brain metastases was performed by TrueSeq RNA-sequencing to determine clinically actionable BrM target genes. Identified targets were functionally validated using small molecule inhibitors in a cohort of resected BrM ex vivo explants (n = 4) and in a patient-derived xenograft (PDX) model of BrM. All statistical tests were two-sided.Results: Considerable shifts in breast cancer cell-specific gene expression profiles were observed (1314 genes upregulated in BrM; 1702 genes downregulated in BrM; DESeq; fold change > 1.5, Padj Conclusions: RNA-seq profiling of longitudinally collected specimens uncovered recurrent gene expression acquisitions in metastatic tumors, distinct from matched primary tumors. Critically, we identify aberrations in key oncogenic pathways and provide functional evidence for their suitability as therapeutic targets. Altogether, this study establishes recurrent, acquired vulnerabilities in BrM that warrant immediate clinical investigation and suggests paired specimen expression profiling as a compelling and underutilized strategy to identify targetable dependencies in advanced cancers.</p
    corecore