5 research outputs found

    NASA Operational Simulator for SmallSats (NOS3) – Design Reference Mission

    Get PDF
    The NASA Operational Simulator for Small Satellites (NOS3) has undergone significant advances including updating the framework to be component based and expanding the open-source code to include a generic design reference mission to enable advanced technologies. This paper details the changes to the framework as well as a number of innovative use-cases the team is currently supporting such as 1) the expansion of NOS3 to support distributed systems missions in collaboration with NASA GSFC, 2) the integration of NASA JPL’s Science Yield improvemeNt via Onboard Prioritization and Summary of Information Systems (SYNOPSIS) for on-orbit science data prioritization, and 3) the inclusion of NASA IV&V JSTAR’s software-only CCSDS encryption library (CryptoLib). NOS3 continues to serve the SmallSat community by providing an open-source digital twin that can significantly reduce costs associated with spacecraft software development, test, and operations. The NOS3 team plans to continue to expand the resources available to the community and partner with others to resolve issues and add new features requested via the NASA GitHub

    The Simeck Family of Lightweight Block Ciphers

    Get PDF
    Two lightweight block cipher families, SIMON and SPECK, have been proposed by researchers from the NSA recently. In this paper, we introduce Simeck, a new family of lightweight block ciphers that combines the good design components from both SIMON and SPECK, in order to devise even more compact and efficient block ciphers. For Simeck32/64, we can achieve 505 GEs (before the Place and Route phase) and 549 GEs (after the Place and Route phase), with the power consumption of 0.417 μW\mu W in CMOS 130nm ASIC, and 454 GEs (before the Place and Route phase) and 488 GEs (after the Place and Route phase), with the power consumption of 1.292 μW\mu W in CMOS 65nm ASIC. Furthermore, all of the instances of Simeck are smaller than the ones of hardware-optimized cipher SIMON in terms of area and power consumption in both CMOS 130nm and CMOS 65nm techniques. In addition, we also give the security evaluation of Simeck with respect to many traditional cryptanalysis methods, including differential attacks, linear attacks, impossible differential attacks, meet-in-the-middle attacks, and slide attacks. Overall, all of the instances of Simeck can satisfy the area, power, and throughput requirements in passive RFID tags
    corecore