14 research outputs found

    Cytosolic SYT/SS18 Isoforms Are Actin-Associated Proteins that Function in Matrix-Specific Adhesion

    Get PDF
    SYT (SYnovial sarcoma Translocated gene or SS18) is widely produced as two isoforms, SYT/L and SYT/S, that are thought to function in the nucleus as transcriptional coactivators. Using isoform-specific antibodies, we detected a sizable pool of SYT isoforms in the cytosol where the proteins were organized into filamentous arrays. Actin and actin-associated proteins co-immunoprecipitated with SYT isoforms, which also co-sedimented and co-localized with the actin cytoskeleton in cultured cells and tissues. The association of SYT with actin bundles was extensive yet stopped short of the distal ends at focal adhesions. Disruption of the actin cytoskeleton also led to a breakdown of the filamentous organization of SYT isoforms in the cytosol. RNAi ablation of SYT/L alone or both isoforms markedly impaired formation of stress fibers and focal adhesions but did not affect formation of cortical actin bundles. Furthermore, ablation of SYT led to markedly impaired adhesion and spreading on fibronectin and laminin-111 but not on collagen types I or IV. These findings indicate that cytoplasmic SYT isoforms interact with actin filaments and function in the ability cells to bind and react to specific extracellular matrices

    Localization and potential role of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 and -2 in different phases of bronchopulmonary dysplasia

    Get PDF
    Bronchopulmonary dysplasia (BPD) can evolve in prematurely born infants who require mechanical ventilation because of hyaline membrane disease (HMD). The development of BPD can be divided in an acute, a regenerative, a transitional, and a chronic phase. During these different phases, extensive remodeling of the lung parenchyma with re-epithelialization of the alveoli and formation of fibrosis occurs. Matrix metalloproteinase-1 (MMP-1) is an enzyme that is involved in re-epithelialization processes, and dysregulation of MMP-1 activity contributes to fibrosis. Localization of MMP-1 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, were investigated in lung tissue obtained from infants who died during different phases of BPD development. In all studied cases (n = 50) type-II pneumocytes were found to be immunoreactive for MMP-1, TIMP-1, and TIMP-2. During the acute and regenerative phase of BPD, type-II pneumocytes re-epithelialize the injured alveoli. This may suggest that MMP-1 and its inhibitors, expressed by type-II pneumocytes, play a role in the re-epithelialization process after acute lung injury. Although MMP-1 staining intensity remained constant in type-II pneumocytes during BPD development, TIMP-1 increased during the chronic fibrotic phase. This relative elevation of TIMP-1 compared with MMP-1 is indicative for reduced collagenolytic activity by type-II pneumocytes in chronic BPD and may contribute to fibrosis. Fibrotic foci in chronic BPD contained fibroblasts immunoreactive for MMP-1 and TIMP-1 and -2. This may indicate that decreased collagen turnover by fibroblasts contributes to fibrosis in BPD development
    corecore