8 research outputs found
Growth Of Ultrafine Particles By Brownian Coagulation
Current atmospheric observations tend to support the view that continental tropospheric aerosols (particularly urban aerosols) show multimodal mass distributions in the size range of 0.01-100 μm. The origin of these aerosols is both natural and anthropogenic. Recently, trimodal sub-μm size distributions from combustion measurements at 0.008, 0.035 and 0.15 μm were also observed. Our interest in the present study is the secondary process of growth of sub-μm size aerosols by the coagulation process alone. Using the \u27J-space\u27 (integer-space) distribution method of Salk (Suck) and Brock (1979, J. Aerosol Sci. 10, 58-590), we report an accurate numerical simulation study of the evolution of ultrafine to fine particle size distributions. Comparision with the analytic solution of Scott (1968, J. atmos. Sci. 25, 54-64) was made to test the accuracy of our J-space or integer-space distribution method. Our multimodal sub-μ particle size distribution study encompassed the particle size range of 0.001-0.20 μm. Details of particle growth in each mode and interaction between different modes in the multimodal distribution were qualitatively analyzed. © 1986
Lanczos exact diagonalization study of field-induced phase transition for Ising and Heisenberg antiferromagnets
Using an exact diagonalization treatment of Ising and Heisenberg model
Hamiltonians, we study field-induced phase transition for two-dimensional
antiferromagnets. For the system of Ising antiferromagnet the predicted
field-induced phase transition is of first order, while for the system of
Heisenberg antiferromagnet it is the second-order transition. We find from the
exact diagonalization calculations that the second-order phase transition
(metamagnetism) occurs through a spin-flop process as an intermediate step.Comment: 4 pages, 4 figure
Effects of Electron Correlations on Hofstadter Spectrum
By allowing interactions between electrons, a new Harper's equation is
derived to examine the effects of electron correlations on the Hofstadter
energy spectra. It is shown that the structure of the Hofstadter butterfly ofr
the system of correlated electrons is modified only in the band gaps and the
band widths, but not in the characteristics of self-similarity and the Cantor
set.Comment: 13 pages, 5 Postscript figure
Role of spinon and spinon singlet pair excitations on phase transitions in superconductors
We examine the roles of massless Dirac spinon and spin singlet pair
excitations on the phase transition in superconductors. Although the
massless spinon excitations in the presence of the spin singlet pair
excitations do not alter the nature of the phase transition at , that
is, the XY universality class, they are seen to induce an additional attractive
interaction potential between vortices, further stabilizing vortex-antivortex
pairs at low temperature for lightly doped high samples.Comment: 5 pages, 1 figur