61 research outputs found

    Dynamic interactions in the tumor niche: how the cross-talk between CAFs and the tumor microenvironment impacts resistance to therapy

    Get PDF
    The tumor microenvironment (TME) is a complex ecosystem of cells, signaling molecules, and extracellular matrix components that profoundly influence cancer progression. Among the key players in the TME, cancer-associated fibroblasts (CAFs) have gained increasing attention for their diverse and influential roles. CAFs are activated fibroblasts found abundantly within the TME of various cancer types. CAFs contribute significantly to tumor progression by promoting angiogenesis, remodeling the extracellular matrix, and modulating immune cell infiltration. In order to influence the microenvironment, CAFs engage in cross-talk with immune cells, cancer cells, and other stromal components through paracrine signaling and direct cell-cell interactions. This cross-talk can result in immunosuppression, tumor cell proliferation, and epithelial-mesenchymal transition, contributing to disease progression. Emerging evidence suggests that CAFs play a crucial role in therapy resistance, including resistance to chemotherapy and radiotherapy. CAFs can modulate the tumor response to treatment by secreting factors that promote drug efflux, enhance DNA repair mechanisms, and suppress apoptosis pathways. This paper aims to understand the multifaceted functions of CAFs within the TME, discusses cross-talk between CAFs with other TME cells, and sheds light on the contibution of CAFs to therapy resistance. Targeting CAFs or disrupting their cross-talk with other cells holds promise for overcoming drug resistance and improving the treatment efficacy of various cancer types

    Wound fluids collected from patients after IORT treatment activates extrinsic apoptotic pathway in MCF7 breast cancer cell line

    Get PDF
    Objectives: Intraoperative radiotherapy (IORT) relates to irradiation of diseased tissue during the surgery within the tumor bed. The reason for this process is based on the fact that the increase in the radiation dose increases local tumor control. It was shown that postoperative fluids obtained from patients after breast cancer conserving surgery, stimulated motility and invasiveness of tumor cells in vitro. The results obtained from TARGIT clinical trial demonstrated that IORT significantly inhibits the stimulatory effect of wound fluids on tumor cells in vitro. We therefore speculated that wound fluids collected from patients after IORT treatment may induce the apoptosis in breast cancer cell lines and it may be a reason for their lower proliferation rate and potential to metastasis. Material and methods: Breast cancer MCF7 cell line was incubated with wound fluids collected from patients after conserving breast cancer surgery or surgery followed by IORT for 4 days. Then the expression of markers associated with extrinsic or intrinsic apoptosis pathway was established. Results: Our results clearly indicate activation of extrinsic apoptosis pathway by wound fluids collected from patients after IORT treatment. No changes in apoptotic markers were seen in cells treated with wound fluids collected from patients after the surgery alone. Conclusions: Thus we confirmed that wound fluids collected from patients after IORT treatment may induce the apoptosis in breast cancer cell lines and it may be a reason for their lower proliferation rate and invasiveness of tumor cells in vitro

    The importance of stem cell engineering in head and neck oncology

    Get PDF
    Head and neck squamous cell carcinoma is the sixth leading cause of cancer worldwide. The most common risk factors are carcinogens (tobacco, alcohol), and infection of the human papilloma virus. Surgery is still considered as the treatment of choice in case of head and neck cancer, followed by a reconstructive surgery to enhance the quality of life in the patients. However, the widespread use of artificial implants does not provide appropriate physiological activities and often cannot act as a long-term solution for the patients. Here we review the applicability of multiple stem cell types for tissue engineering of cartilage, trachea, vocal folds and nerves for head and neck injuries. The ability of the cells to self-renew and maintain their pluripotency state makes them an attractive tool in tissue engineering

    Currently used in clinical practice beam rate changes have no significant effect on the reduction of clonogenic capacity of PNT1A cells in vitro

    Get PDF
    Background: Due to the lack of selectivity of ionizing radiation between normal and cancer cells, it is important to improve the existing radiation patterns. Lowering the risk of cancer recurrence and comfort during treatment are priorities in radiotherapy. Materials and methods: In the experiment we used dose verification to determine the irradiation time calculated by a treatment planning system for 6XFFF and 10XFFF beams. Cells cultured under standard conditions were irradiated with a dose of 2 Gy at different beam rates 400 MU/min, 600 MU/min, 800 MU/min, 1000 MU/min, 1400 MU/min,  1600 MU/min and 2400 MU/min using 6XFFF, 10XFFF and 6XFF beams. Results: The experiment was aimed at comparing the biological response of normal prostate cells after clinically applied radiation patterns. No statistically significant differences in the cellular response were observed. The wide range of beam rates as well as the beam profiles did not significantly affect cell proliferation. Conclusions: High beam rates, without significantly affecting the clonogenic capacity of cells, have an impact on the quality of patient's treatment. With the increasing beam rate the irradiation time is shortened, which has an important impact on patients’ health. This experiment can have a practical significance

    Primary cancer-associated fibroblasts exhibit high heterogeneity among breast cancer subtypes

    Get PDF
    Background: Cancer-associated fibroblasts (CAFs) are a diverse subset of cells, that is recently gaining in popularity and have the potential to become a new target for breast cancer therapy; however, broader research is required to understand their mechanisms and interactions with breast cancer cells. The goal of the study was to isolate CAFs from breast cancer tumour and characterise isolated cell lines. We concentrated on numerous CAF biomarkers that would enable their differentiation.  Materials and methods: Flow cytometry, immunofluorescence, and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) were used to phenotype the primary CAFs. Conclusions: According to our findings, there was no significant pattern in the classification of cancer-associated fibroblasts. The results of biomarkers expression were heterogeneous, thus no specific subtypes were identified. Furthermore, a comparison of cancer-associated fibroblasts derived from different BC subtypes (luminal A and B, triple-negative, HER2 positive) did not  reveal any clear trend of expression

    MiRNAs from serum-derived extracellular vesicles as biomarkers for uveal melanoma progression

    Get PDF
    Uveal melanoma (UM) is a rare type of malignancy that originates from melanocytes located in the choroid, iris and the ciliary body of the eye. UM has a very high mortality upon metastatic spread to the liver, the prime target organ for UM metastasis. The lack of effective therapies for advanced stages of the disease aggravate the prognosis further. Moreover, biomarkers for early detection and progression of UM, especially the molecular traits governing the development of metastasis, are still not available in clinical practice. One extensively studied components of liquid biopsies are exosomes, a subtype of extracellular vesicle. Due to their unique molecular cargo, they could be used as carriers of early markers of cancer development and progression. For characterisation of the miRNA profiles present in circulating serum-derived exosomes of patients with diagnosed primary and metastatic UM, we have analysed the miRNA cargos using next-generation sequencing followed by RT-qPCR validation in a cohort of patients (control n=20; primary n=9; metastatic n=11). Nine miRNAs clearly differentiating these patient groups have been established. We show that hsa-miR-223 and hsa-miR-203a are the most promising biomarker candidates, allowing categorization of patients into local and advanced UM. Additionally, the comparison of miRNA expression levels in exosomes derived from UM patients with those derived from healthy donors, revealed that hsa-miR-144 has the potential to be used as an early marker for presence of UM. Taken together, this pilot study reveals that miRNAs extracted from circulating exosomes could be exploited as potential biomarkers in UM diagnosis and, more importantly, for indicating metastatic spread

    Radiobiological models in prediction of radiation cardiotoxicity

    No full text
    Coronary disease induced by previous radiotherapy is the most common cause of death among patients treated with radiotherapy for cancer. Risk factors that may affect the frequency and intensity of radiotherapy’s cardiac toxicity are primarily the radiation dose and the volume of the heart exposed to radiation. The prolonged survival time of patients after radiotherapy, but also the intensive development of modern radiotherapy techniques results in the necessity of precise estimation of both tumor control probability, and the risk of normal tissue damage, thus the models describing the probability of complications in normal tissues have also been developed. The response from the cardiovascular system to high-dose radiation is known and associated with a pro-inflammatory response. However, the effect of low doses may be completely different because it induces an anti-inflammatory response. Also, there is no unambiguous answer to the question of whether RICD is a deterministic effect. Moreover, there is a lack of literature data on the use of known radiobiological models to assess the risk of cardiovascular complications. The models described are general and concerns any healthy tissue. Therefore, when planning treatment for patients, particular attention should be paid to the dose and area of ​​the heart to be irradiated

    Interplay between inflammation and cancer

    No full text
    Tumor-promoting inflammation is one of the hallmarks of cancer. It has been shown that cancer development is strongly influenced by both chronic and acute inflammation process. Progress in research on inflammation revealed a connection between inflammatory processes and neoplastic transformation, the progression of tumour, and the development of metastases and recurrences. Moreover, the tumour invasive procedures (both surgery and biopsy) affect the remaining tumour cells by increasing their survival, proliferation and migration. One of the concepts explaining this phenomena is an induction of a wound healing response. While in normal tissue it is necessary for tissue repair, in tumour tissue, induction of adaptive and innate immune response related to wound healing, stimulates tumour cell survival, angiogenesis and extravasation of circulating tumour cells. It has become evident that certain types of immune response and immune cells can promote tumour progression more than others. In this review, we focus on current knowledge on carcinogenesis and promotion of cancer growth induced by inflammatory processes
    • 

    corecore