29 research outputs found

    Hierarchical Micro/Nano-Porous Acupuncture Needles Offering Enhanced Therapeutic Properties

    Get PDF
    Acupuncture as a therapeutic intervention has been widely used for treatment of many pathophysiological disorders. For achieving improved therapeutic effects, relatively thick acupuncture needles have been frequently used in clinical practice with, in turn, enhanced stimulation intensity. However due to the discomforting nature of the larger-diameter acupuncture needles there is considerable interest in developing advanced acupuncture therapeutical techniques that provide more comfort with improved efficacy. So motivated, we have developed a new class of acupuncture needles, porous acupuncture needles (PANs) with hierarchical micro/nano-scale conical pores upon the surface, fabricated via a simple and well known electrochemical process, with surface area approximately 20 times greater than conventional acupuncture needles. The performance of these high-surface-area PANs is evaluated by monitoring the electrophysiological and behavioral responses from the in vivo stimulation of Shenmen (HT7) points in Wistar rats, showing PANs to be more effective in controlling electrophysiological and behavioral responses than conventional acupuncture needles. Comparative analysis of cocaine induced locomotor activity using PANs and thick acupuncture needles shows enhanced performance of PANs with significantly less pain sensation. Our work offers a unique pathway for achieving a comfortable and improved acupuncture therapeutic effect. © The Author(s) 2016.1

    Neuropeptides SP and CGRP Underlie the Electrical Properties of Acupoints

    Get PDF
    Electrical skin measurements at acupuncture points (acupoints) have been utilized as a diagnostic and therapeutic aid for more than 50 years. Although acupoints are described as having distinct electrical properties, such as high conductance and low impedance, the underlying mechanisms are currently unknown. The present study investigated in a rat model of hypertension whether the high conductance at acupoints is a result of the release of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) during neurogenic inflammation in the referred pain area. When plasma extravasation from neurogenic inflammation was examined by exploring the leakage of intravenously injected Evans blue dye (EBD) to the skin, extravasated EBD was found most frequently in acupoints on the wrist. The increased conductance and temperature at these acupoints occurred during the development of hypertension. The increase in conductance and plasma extravasation at acupoints in hypertensive rats was ablated by cutting median and ulnar nerves, blocking small diameter afferent fibers with resiniferatoxin (RTX) injection into median and ulnar nerves, or antagonizing SP or CGRP receptors in acupoints. In turn, intradermal injection of SP or CGRP resulted in increased conductance and plasma extravasation in naïve rats. Elevated levels of SP and CGRP were found in the acupoints of hypertensive rats. These findings suggest that the high conductance at acupoints is due to vascular leakage following local release of SP and CGRP during neurogenic inflammation

    Attenuation of immobilization stress-induced hypertension by temperature-controllable warm needle acupuncture in rats and the peripheral neural mechanisms

    Get PDF
    IntroductionWe and others have shown that electrical stimulation of the PC-6 acupoint over the wrist relieves hypertension by stimulating afferent sensory nerve fibers and activating the central endogenous opioid system. Warm needle acupuncture has long been utilized to treat various diseases in clinics.MethodsHere, we developed a temperature-controllable warm needle acupuncture instrument (WAI) and investigated the peripheral mechanism underlying the effect of warm needle acupuncture at PC-6 on hypertension in a rat model of immobilization stress-induced hypertension.ResultsStimulation with our newly developed WAI and traditional warm needle acupuncture attenuated hypertension development. Such effects were reproduced by capsaicin (a TRPV1 agonist) injection into PC-6 or WAI stimulation at 48°C. In contrast, PC-6 pretreatment with the TRPV1 antagonist capsazepine blocked the antihypertensive effect of WAI stimulation at PC-6. WAI stimulation at PC-6 increased the number of dorsal root ganglia double-stained with TRPV1 and CGRP. QX-314 and capsaicin perineural injection into the median nerve for chemical ablation of small afferent nerve fibers (C-fibers) prevented the antihypertensive effect of WAI stimulation at PC-6. Additionally, PC-6 pretreatment with RTX ablated the antihypertensive effect of WAI stimulation.ConclusionThese findings suggest that warm needle acupuncture at PC-6 activates C-fiber of median nerve and the peripheral TRPV1 receptors to attenuate the development of immobilization stress-induced hypertension in rats

    Peripheral Sensory Nerve Tissue but Not Connective Tissue Is Involved in the Action of Acupuncture

    Get PDF
    Acupuncture has been used to treat a variety of diseases and symptoms for more than 2,500 years. While a number of studies have shown that nerves are responsible for initiating the effects of acupuncture, several lines of study have emphasized the role of connective tissue in the initiation of acupuncture signals. To determine whether nerves or connective tissue mediate the action of acupuncture, we constructed a robotic acupuncture needle twister that mimicked the twisting of the needle by an acupuncturist, and we examined the role of nerves and connective tissues in the generation of acupuncture effects in rat cocaine-induced locomotion, stress-induced hypertension, and mustard oil-induced visceral pain models. Robotic or manual twisting of acupuncture needles effectively suppressed cocaine-induced hyperactivity, elevated systemic blood pressure or mustard oil-induced visceral pain in rats. These acupuncture effects were completely abolished by injecting bupivacaine, a local anesthetic, into acupoints. However, disruption of connective tissue by injecting type I collagenase into acupoints did not affect these acupuncture effects. Our findings suggest that nerve tissue, but not connective tissue, is responsible for generating the effects of acupuncture

    Electroacupuncture at Neurogenic Spots in Referred Pain Areas Attenuates Hepatic Damages in Bile Duct-Ligated Rats

    No full text
    Visceral pain frequently produces referred pain at somatic sites due to the convergence of somatic and visceral afferents. In skin overlying the referred pain, neurogenic spots characterized by hyperalgesia, tenderness and neurogenic inflammation are found. We investigated whether neurogenic inflammatory spots function as acupoints in the rat model of bile duct ligation-induced liver injury. The majority of neurogenic spots were found in the dorsal trunk overlying the referred pain and matched with locations of acupoints. The spots, as well as acupoints, showed high electrical conductance and enhanced expression of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP). Electroacupuncture at neurogenic spots reduced serum hepatocellular enzyme activities and histological patterns of acute liver injury in bile duct ligation (BDL) rats. The results suggest that the neurogenic spots have therapeutic effects as acupoints on hepatic injury in bile-duct ligated rats

    An Increase in Peripheral Temperature following Cocaine Administration Is Mediated through Activation of Dopamine D2 Receptor in Rats

    No full text
    Drug addiction has become a worldwide problem, affecting millions of people across the globe. While the majority of mechanistic studies on drug addiction have been focused on the central nervous system, including the mesolimbic dopamine system, the peripheral actions of drugs of abuse remain largely unknown. Our preliminary study found that the systemic injection of cocaine increased peripheral skin temperature. This led us to our present study, which investigated the mechanisms underlying the increase in peripheral temperature following cocaine injection. Male Sprague Dawley rats were anesthetized with pentobarbital sodium, and peripheral skin temperature measurements were taken using a thermocouple needle microprobe and an infrared thermal camera. Cocaine injection caused an acute rise in peripheral body temperature, but not core body temperature, about 10 min after injection, and the temperature increases were occluded by systemic injection of dopamine D2 receptor antagonist L741,626, but not D1 receptor antagonist SCH23390. In addition, systemic administration of bromocriptine, a dopamine D2 receptor agonist, significantly increased peripheral temperature. Infrared thermal imaging showed that the thermal increases following cocaine injection were predominantly in the distal areas of the forelimbs and hindlimbs, relative to core body temperature. Treatment with cocaine or bromocriptine decreased the size of skin blood vessels without affecting the expression of dopamine D2 receptors. These results suggest that increased peripheral temperature in skin following cocaine injection is associated with the activation of the dopamine D2 receptor

    Activation of a hypothalamus-habenula circuit by mechanical stimulation inhibits cocaine addiction-like behaviors

    No full text
    Abstract Background Mechanoreceptor activation modulates GABA neuron firing and dopamine (DA) release in the mesolimbic DA system, an area implicated in reward and substance abuse. The lateral habenula (LHb), the lateral hypothalamus (LH), and the mesolimbic DA system are not only reciprocally connected, but also involved in drug reward. We explored the effects of mechanical stimulation (MS) on cocaine addiction-like behaviors and the role of the LH-LHb circuit in the MS effects. MS was performed over ulnar nerve and the effects were evaluated by using drug seeking behaviors, optogenetics, chemogenetics, electrophysiology and immunohistochemistry. Results Mechanical stimulation attenuated locomotor activity in a nerve-dependent manner and 50-kHz ultrasonic vocalizations (USVs) and DA release in nucleus accumbens (NAc) following cocaine injection. The MS effects were ablated by electrolytic lesion or optogenetic inhibition of LHb. Optogenetic activation of LHb suppressed cocaine-enhanced 50 kHz USVs and locomotion. MS reversed cocaine suppression of neuronal activity of LHb. MS also inhibited cocaine-primed reinstatement of drug-seeking behavior, which was blocked by chemogenetic inhibition of an LH-LHb circuit. Conclusion These findings suggest that peripheral mechanical stimulation activates LH-LHb pathways to attenuate cocaine-induced psychomotor responses and seeking behaviors

    Effect of acupuncture on Lipopolysaccharide-induced anxiety-like behavioral changes: involvement of serotonin system in dorsal Raphe nucleus

    No full text
    Abstract Background Acupuncture has been used as a common therapeutic tool in many disorders including anxiety and depression. Serotonin transporter (SERT) plays an important role in the pathology of anxiety and other mood disorders. The aim of this study was to evaluate the effects of acupuncture on lipopolysaccharide (LPS)-induced anxiety-like behaviors and SERT in the dorsal raphe nuclei (DRN). Methods Rats were given acupuncture at ST41 (Jiexi), LI11 (Quchi) or SI3 (Houxi) acupoint in LPS-treated rats. Anxiety-like behaviors of elevated plus maze (EPM) and open field test (OFT) were measured and expressions of SERT and/or c-Fos were also examined in the DRN using immunohistochemistry. Results The results showed that 1) acupuncture at ST41 acupoint, but neither LI11 nor SI3, significantly attenuated LPS-induced anxiety-like behaviors in EPM and OFT, 2) acupuncture at ST41 decreased SERT expression increased by LPS in the DRN. Conclusions Our results suggest that acupuncture can ameliorate anxiety-like behaviors, possibly through regulation of SERT in the DRN
    corecore