31 research outputs found

    Cannabis and development of dual diagnoses: a literature review.

    No full text
    BACKGROUND: The use of cannabis has garnered more attention recently with ongoing efforts at marijuana legalization. The consequences of cannabis use are not clearly understood and remain a concern. OBJECTIVES: To review the acute and persistent effects of cannabis use and associations with psychiatric disorders. METHODS: Using Pubmed and PsychInfo, we conducted a narrative review of the literature on cannabis and psychiatric comorbidity using the keywords cannab*, marijuana, schizo*, psychosis, mood, depression, mania, bipolar, and anxiety. RESULTS: There is substantial evidence of cannabis use leading to other illicit drug use and of an association between cannabis use and psychosis. A few reports suggest an association with bipolar disorder while the association with depression and anxiety disorders is mixed. CONCLUSIONS: Whenever an association is observed between cannabis use and psychiatric disorders, the relationship is generally an adverse one. Age at the time of cannabis use appears to be an important factor with stronger associations observed between adolescent onset cannabis use and later onset of psychiatric disorders. Additional studies taking into account potential confounds (such as withdrawal symptoms, periods of abstinence, and other substance use) and moderators (such as age of initiation of cannabis use, the amount and frequency of drug use, prior history of childhood maltreatment, and gender) are needed to better understand the psychiatric consequences of cannabis use

    Metabotropic glutamate receptor 2 and 3 gene expression in the human prefrontal cortex and mesencephalon in schizophrenia

    No full text
    Group II metabotropic glutamate receptors (mGluR2 and mGluR3) are implicated in schizophrenia. We characterized mGluR2 and 3 mRNA in the human prefrontal cortex (PFC) and mesencephalon, and then compared cases with schizophrenia to matched controls. In the human brain, both receptors were expressed in the PFC and, unlike the rodent, in dopaminergic (DA) cell groups. In schizophrenia, we found significantly higher levels of mGluR2 mRNA in the PFC white matter. The expression of mGluR2, 3 in DA cells provide a mechanism for glutamate to modulate dopamine release in the human brain and this species-specific difference may be critical to understanding rodent models in schizophrenia

    Whole-body biodistribution and estimation of radiation-absorbed doses of the dopamine D1 receptor radioligand 11C-NNC 112 in humans

    No full text
    The present study estimated radiation-absorbed doses of the dopamine D1 receptor radioligand [11C]((+)-8-chloro-5-(7-benzofuranyl)-7-hydroxy-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine) (NNC 112) in humans, based on dynamic whole-body PET in healthy subjects. Methods: Whole-body PET was performed on 7 subjects after injection of 710 {+/-} 85 MBq of 11C-NNC 112. Fourteen frames were acquired for a total of 120 min in 7 segments of the body. Regions of interest were drawn on compressed planar images of source organs that could be identified. Radiation dose estimates were calculated from organ residence times using the OLINDA 1.0 program. Results: The organs with the highest radiation-absorbed doses were the gallbladder, liver, lungs, kidneys, and urinary bladder wall. Biexponential fitting of mean bladder activity demonstrated that 15% of activity was excreted via the urine. With a 2.4-h voiding interval, the effective dose was 5.7 {micro}Sv/MBq (21.1 mrem/mCi). Conclusion: 11C-NNC 112 displays a favorable radiation dose profile in humans and would allow multiple PET examinations per year to be performed on the same subject

    Replication stress induced site-specific phosphorylation targets WRN to the ubiquitin-proteasome pathway

    No full text
    Faithful and complete genome replication in human cells is essential for preventing the accumulation of cancer-promoting mutations. WRN, the protein defective in Werner syndrome, plays critical roles in preventing replication stress, chromosome instability, and tumorigenesis. Herein, we report that ATR-mediated WRN phosphorylation is needed for DNA replication and repair upon replication stress. A serine residue, S1141, in WRN is phosphorylated in vivo by the ATR kinase in response to replication stress. ATR-mediated WRN S1141 phosphorylation leads to ubiquitination of WRN, facilitating the reversible interaction of WRN with perturbed replication forks and subsequent degradation of WRN. The dynamic interaction between WRN and DNA is required for the suppression of new origin firing and Rad51-dependent double-stranded DNA break repair. Significantly, ATR-mediated WRN phosphorylation is critical for the suppression of chromosome breakage during replication stress. These findings reveal a unique role for WRN as a modulator of DNA repair, replication, and recombination, and link ATR-WRN signaling to the maintenance of genome stability

    Antidepressant Effect of Optogenetic Stimulation of the Medial Prefrontal Cortex

    No full text
    Brain stimulation and imaging studies in humans have highlighted a key role for the prefrontal cortex in clinical depression; however, it remains unknown whether excitation or inhibition of prefrontal cortical neuronal activity is associated with antidepressant responses. Here, we examined cellular indicators of functional activity, including the immediate early genes (IEGs) zif268 (egr1), c-fos, and arc, in the prefrontal cortex of clinically depressed humans obtained postmortem. We also examined these genes in the ventral portion of the medial prefrontal cortex (mPFC) of mice after chronic social defeat stress, a mouse model of depression. In addition, we used viral vectors to overexpress channel rhodopsin 2 (a light-activated cation channel) in mouse mPFC to optogenetically drive “burst” patterns of cortical firing in vivo and examine the behavioral consequences. Prefrontal cortical tissue derived from clinically depressed humans displayed significant reductions in IEG expression, consistent with a deficit in neuronal activity within this brain region. Mice subjected to chronic social defeat stress exhibited similar reductions in levels of IEG expression in mPFC. Interestingly, some of these changes were not observed in defeated mice that escape the deleterious consequences of the stress, i.e., resilient animals. In those mice that expressed a strong depressive-like phenotype, i.e., susceptible animals, optogenetic stimulation of mPFC exerted potent antidepressant-like effects, without affecting general locomotor activity, anxiety-like behaviors, or social memory. These results indicate that the activity of the mPFC is a key determinant of depression-like behavior, as well as antidepressant responses.National Institute of Mental Health (U.S.)AstraZeneca (Firm)Merck Research LaboratoriesPsychoGenics (Firm)Brain and Behavior Research Foundation (NARSAD Young Investigator Award
    corecore