819 research outputs found

    Advancing Hardware Security Using Polymorphic and Stochastic Spin-Hall Effect Devices

    Full text link
    Protecting intellectual property (IP) in electronic circuits has become a serious challenge in recent years. Logic locking/encryption and layout camouflaging are two prominent techniques for IP protection. Most existing approaches, however, particularly those focused on CMOS integration, incur excessive design overheads resulting from their need for additional circuit structures or device-level modifications. This work leverages the innate polymorphism of an emerging spin-based device, called the giant spin-Hall effect (GSHE) switch, to simultaneously enable locking and camouflaging within a single instance. Using the GSHE switch, we propose a powerful primitive that enables cloaking all the 16 Boolean functions possible for two inputs. We conduct a comprehensive study using state-of-the-art Boolean satisfiability (SAT) attacks to demonstrate the superior resilience of the proposed primitive in comparison to several others in the literature. While we tailor the primitive for deterministic computation, it can readily support stochastic computation; we argue that stochastic behavior can break most, if not all, existing SAT attacks. Finally, we discuss the resilience of the primitive against various side-channel attacks as well as invasive monitoring at runtime, which are arguably even more concerning threats than SAT attacks.Comment: Published in Proc. Design, Automation and Test in Europe (DATE) 201

    Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-Chip (SoC) Verification

    Full text link
    Modern Systems-on-Chip (SoC) designs are increasingly heterogeneous and contain specialized semi-programmable accelerators in addition to programmable processors. In contrast to the pre-accelerator era, when the ISA played an important role in verification by enabling a clean separation of concerns between software and hardware, verification of these "accelerator-rich" SoCs presents new challenges. From the perspective of hardware designers, there is a lack of a common framework for the formal functional specification of accelerator behavior. From the perspective of software developers, there exists no unified framework for reasoning about software/hardware interactions of programs that interact with accelerators. This paper addresses these challenges by providing a formal specification and high-level abstraction for accelerator functional behavior. It formalizes the concept of an Instruction Level Abstraction (ILA), developed informally in our previous work, and shows its application in modeling and verification of accelerators. This formal ILA extends the familiar notion of instructions to accelerators and provides a uniform, modular, and hierarchical abstraction for modeling software-visible behavior of both accelerators and programmable processors. We demonstrate the applicability of the ILA through several case studies of accelerators (for image processing, machine learning, and cryptography), and a general-purpose processor (RISC-V). We show how the ILA model facilitates equivalence checking between two ILAs, and between an ILA and its hardware finite-state machine (FSM) implementation. Further, this equivalence checking supports accelerator upgrades using the notion of ILA compatibility, similar to processor upgrades using ISA compatibility.Comment: 24 pages, 3 figures, 3 table

    The Impact of Global Outsourcing on IT Providers

    Get PDF
    This article examines the impact of Global IT Outsourcing on Information Technology (IT) firms from the off-shore sourcing perspective. IT Providers are defined in this article as companies that produce IT as opposed to companies that consume IT. To assess the impact of outsourcing on such companies, this article presents an Enterprise Architecture (EA) view of IT and uses it as the framework to determine the impact of outsourcing. The three dimensions of Enterprise Architecture include people, process and product and/or services. The article argues that if the sourcing decisions are based purely on short term goals such as cost, then the long term viability of the IT firm may be compromised. Lack of an IT development model and lack of IT metrics makes it difficult for IT Providers to truly plan and manage the off-shore resources. This article suggests that shorter development cycles, requirements volatility, and the need for constant developer-user interaction makes off-shore outsourcing more difficult. To address these challenges, organizations should develop metrics and governance practices based on experience. This article also proposes that the type of product or service is critical in addressing the decision to outsource. The higher the intellectual (or proprietary) content, the higher is the risk when outsourcing. This article presents two simple frameworks, one for assessing the benefits and risk of outsourcing for IT infrastructure services and the other for IT applications. IT Providers are advised to pay particular attention to the life cycle model of off-shoring where early gains give way to a learning and adjustment phase. If the IT firm successfully develops a rich experience base and adjusts the off shore model, then sustained benefits can be realized

    Study and Optimization of Ethanol (LRF) Juliflora Biodiesel (HRF) Fuelled RCCI Engine with and without EGR System

    Get PDF
    Over the past few decades, the use of non-renewable energy has progressively expanded, harming the environment. In this investigation, 4-stroke single-cylinder Reactivity Controlled Compression Ignition (RCCI) engine performance and emission behaviour are reduced with the help of running fuel. 20% Juliflora biodiesel and 80% diesel are used as high-reactive fuel (HRF) and Ethanol is used as the low-reactive fuel (LRF). The RCCI engine is evaluated at different input conditions by varying engine load from 0 to 100 (0, 25, 50, 75, and 100%) and LRF percentage from 30 to 60 (30, 40, 50 and 60%). Additionally Exhaust Gas Recirculation (EGR) is used to enhance the RCCI engine emission behaviour and performance.The studied output performance of RCCI engine are cylinder pressure (CP), brake thermal efficiency (BTE), heat release rate (HRR), and brake-specific fuel consumption (BSFC) respectively. Also, unburned hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NOX), and smoke opacity (SO) are calculated on the RCCI engine for all input condition. The test results are further optimized with the help of hybrid deep belief neural network based Aquila optimization method. The proposed hybrid DBN-AO has performed better than conventional DBN method.The predicted optimal value is obtained from the regression and average regression coefficients of 0.99961. The predicted optimum values are load 80%, LRF60%, and EGR 15%, respectively. The confirmatory error analysis has shown BTE (3.7%), BSFC (4%), SO (4.7%), HC (7.775%), CO (3.44%) and NOx (3.46%) respectively. The EGR application reduces the RCCI engine emission behaviour in loading condition

    A plain linear rule for fatigue analysis under natural loading considering the sequence effect

    Get PDF
    Fatigue under variable amplitude loading is currently assessed with the Palmgren-Miner rule in structural standards, ignoring the order of loading, which would require non-linear or mixed rules, especially for the random loading sequences applied to certain structures. Therefore, the goal is to develop a practical and simple correction factor ensuring the linear summation of damage is conservative, so as to take the sequence effect into account in random loading from natural sources. The theoretical consistency of this approach is demonstrated and a case study is developed to test the feasibility of the new rule and its simplicity

    Use of hydrous titanium dioxide as potential sorbent for the removal of manganese from water

    Get PDF
    This research article deals with an electrosynthesis of hydrous titanium dioxide by anodic dissolution of titanium sacrificial anodes and their application for the adsorption of manganese from aqueous solution. Titanium sheet was used as the sacrificial anode and galvanized iron sheet was used as the cathode. The optimization of different experimental parameters like initial ion concentration, current density, pH, temperature, etc., on the removal efficiency of manganese was carried out. The maximum removal efficiency of 97.55 % was achieved at a current density of 0.08 A dm-2 and pH of 7.0. The Langmuir, Freundlich and Redlich Peterson isotherm models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The adsorption of manganese preferably followed the Langmuir adsorption isotherm. The adsorption kinetics was modelled by first- and second- order rate models and the adsorption kinetic studies showed that the adsorption of manganese was best described using the second-order kinetic model. Thermodynamic parameters indicate that the adsorption of manganese on hydrous titanium dioxide was feasible, spontaneous and exothermic
    corecore