310 research outputs found
Valence-electron transfer and a metal-insulator transition in a strongly correlated perovskite oxide
We present transport and thermal data for the quadruple-perovskites
MCu3(Ti1-xRux)4O12 where 0 < x < 1. A metal-insulator transition (MIT) occurs
for Ru concentrations x~0.75. At the same time, the Cu2+ antiferromagnetic
state is destroyed and it's magnetic entropy suppressed by Ru on a 1:1 basis.
This implies that each Ru transfers an electron to a Cu ion and thus the MIT
correlates with filling the Cu 3d shell. The Cu spin entropy in this strongly
correlated electron material provides a unique probe among MIT systems.Comment: 15 pages, 4 figures, 1 tabl
First principles investigation of the electronic structure of La2MnNiO6: A room-temperature insulating ferromagnet
Using first principles calculations within DFT based on the full potential
APW+lo method, we calculated the electronic and magnetic structures for the
ferromagnetic and antiferromagnetic states of La2MnNiO6 and analyzed the site
projected density of states and electronic band structures. Our calculations
show that the ground state of La2MnNiO6 is ferromagnetic insulating with the
magnetization in agreement with Hund's first rule and experimental findings.Comment: 10 pages, 3 figure
Who are the obese? A cluster analysis exploring subgroups of the obese
Background
Body mass index (BMI) can be used to group individuals in terms of their height and weight as obese. However, such a distinction fails to account for the variation within this group across other factors such as health, demographic and behavioural characteristics. The study aims to examine the existence of subgroups of obese individuals.
Methods
Data were taken from the Yorkshire Health Study (2010–12) including information on demographic, health and behavioural characteristics. Individuals with a BMI of ≥30 were included. A two-step cluster analysis was used to define groups of individuals who shared common characteristics.
Results
The cluster analysis found six distinct groups of individuals whose BMI was ≥30. These subgroups were heavy drinking males, young healthy females; the affluent and healthy elderly; the physically sick but happy elderly; the unhappy and anxious middle aged and a cluster with the poorest health.
Conclusions
It is important to account for the important heterogeneity within individuals who are obese. Interventions introduced by clinicians and policymakers should not target obese individuals as a whole but tailor strategies depending upon the subgroups that individuals belong to
On the magnetism of Ln{2/3}Cu{3}Ti{4}O{12} (Ln = lanthanide)
The magnetic and thermodynamic properties of the complete
LnCuTiO series were investigated. Here stands for
the lanthanides La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. %Most
of the compounds were prepared as single phase polycrystalline powder %without
any traces of impurities. Marginal amounts of %impurities were
detected Gd, Er, and Tm. %Significant amounts of impurity phases were
found for Ce and Yb. All the samples investigated crystallize in the
space group with lattice constants that follow the lanthanide
contraction. The lattice constant of the Ce compound reveals the presence of
Ce leading to the composition CeCuTiO. From
magnetic susceptibility and electron-spin resonance experiments it can be
concluded that the copper ions always carry a spin and order
antiferromagnetically close to 25\,K. The Curie-Weiss temperatures can
approximately be calculated assuming a two-sublattice model corresponding to
the copper and lanthanide ions, respectively. It seems that the magnetic
moments of the heavy rare earths are weakly coupled to the copper spins, while
for the light lanthanides no such coupling was found. The moments remain
paramagnetic down to the lowest temperatures, with the exception of the Tm
compound, which indicates enhanced Van-Vleck magnetism due to a non-magnetic
singlet ground state of the crystal-field split manifold. From
specific-heat measurements we accurately determined the antiferromagnetic
ordering temperature and obtained information on the crystal-field states of
the rare-earth ions. The heat-capacity results also revealed the presence of a
small fraction of Ce in a magnetic state.Comment: 10 pages, 10 figure
Superconductivity in the Correlated Pyrochlore Cd_2Re_2O_7
We report the observation of superconductivity in high-quality
CdReO single crystals with room-temperature pyrochlore structure.
Resistivity and ac susceptibility measurements establish an onset transition
temperature T = 1.47 K with transition width T = 0.25
K. In applied magnetic field, the resistive transition shows a type-II
character, with an approximately linear temperature-dependence of the upper
critical field H. The bulk nature of the superconductivity is confirmed
by the specific heat jump with C = 37.9 mJ/mol-K. Using the
value extracted from normal-state specific heat data, we obtain
C/T = 1.29, close to the weak coupling BCS value. In the
normal state, a negative Hall coefficient below 100 K suggests electron-like
conduction in this material. The resistivity exhibits a quadratic T-dependence
between 2 and 60 K, i.e., +AT, indicative of Fermi-liquid
behavior. The values of the Kadowaki-Woods ratio A/ and the Wilson
ratio are comparable to that for strongly correlated materials.Comment: 4 pages, 5 figure
Valence state of Mn in Ca-doped LaMnO3 studied by high-resolution Mn K ß emission spectroscopy
Mn K ß x-ray emission spectra provide a direct method to probe the effective spin state and charge density
on the Mn atom and is used in an experimental study of a class of Mn oxides. Specifically, the Mn K ß line
positions and detailed spectral shapes depend on the oxidation and the spin state of the Mn sites as well as the
degree of d covalency/itinerancy. Theoretical calculations including atomic charge and multiplet effects, as
well as crystal-field splittings and covalency effects, are used as a guide to the experimental results. Direct
comparison of the ionic system MnF2 and the covalent system MnO reveals significant changes due to the
degree of covalency of Mn within atomic-type Mn K ß simulations. Moreover, comparisons of measurement
with calculations support the assumed high spin state of Mn in all of the systems studied. The detailed shape
and energy shift of the spectra for the perovskite compounds, LaMnO3 and CaMnO3, are, respectively, found
to be very similar to the covalent Mn^(3+)-Mn2O3 and Mn^(4+)-MnO2 compounds thereby supporting the identical
Mn-state assignments. Comparison to the theoretical modeling emphasizes the strong covalency in these
materials. Detailed Mn K b x-ray emission results on the La1_xCaxMnO3 system can be well fit by linear
superpositions of the end member spectra, consistent with a mixed-valent character for the intermediate compositions.
However, an arrested Mn-valence response to the doping in the x<0.3 range is found. No evidence
for Mn^2+ is observed at any x values seemingly ruling out proposals regarding Mn^3+ disproportionation
Lattice dielectric response of CdCu{3}Ti{4}O{12} and of CaCu{3}Ti{4}O{12} from first principles
Structural, vibrational, and lattice dielectric properties of
CdCu{3}Ti{4}O{12} are studied using density-functional theory within the local
spin-density approximation, and the results are compared with those computed
previously for CaCu{3}Ti{4}O{12}. Replacing Ca with Cd is found to leave many
calculated quantities largely unaltered, although significant differences do
emerge in zone-center optical phonon frequencies and mode effective charges.
The computed phonon frequencies of CdCu{3}Ti{4}O{12} are found to be in
excellent agreement with experiment, and the computed lattice contribution to
the intrinsic static dielectric constant (~60) also agrees exceptionally well
with a recent optical absorption experiment. These results provide further
support for a picture in which the lattice dielectric response is essentially
conventional, suggesting an extrinsic origin for the anomalous low-frequency
dielectric response recently observed in both materials.Comment: 5 pages; uses REVTEX macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/lh_cdct/index.htm
The CMBR ISW and HI 21-cm Cross-correlation Angular Power Spectrum
The late-time growth of large scale structures (LSS) is imprinted in the CMBR
anisotropy through the Integrated Sachs Wolfe (ISW) effect. This is perceived
to be a very important observational probe of dark energy. Future observations
of redshifted 21-cm radiation from the cosmological neutral hydrogen (HI)
distribution hold the potential of probing the LSS over a large redshift range.
We have investigated the possibility of detecting the ISW through
cross-correlations between the CMBR anisotropies and redshifted 21-cm
observations. Assuming that the HI traces the dark matter, we find that the
ISW-HI cross-correlation angular power spectrum at an angular multipole l is
proportional to the dark matter power spectrum evaluated at the comoving wave
number l/r, where r is the comoving distance to the redshift from which the HI
signal originated. The amplitude of the cross-correlation signal depends on
parameters related to the HI distribution and the growth of cosmological
perturbations. However the cross-correlation is extremely weak as compared to
the CMBR anisotropies and the predicted HI signal. As a consequence the
cross-correlation signal is smaller than the cosmic variance, and a
statistically significant detection is not very likely.Comment: 13 pages, 4 eps figures, submitte
Optical properties of pyrochlore oxide
We present optical conductivity spectra for
single crystal at different temperatures. Among reported pyrochlore ruthenates,
this compound exhibits metallic behavior in a wide temperature range and has
the least resistivity. At low frequencies, the optical spectra show typical
Drude responses, but with a knee feature around 1000 \cm. Above 20000 \cm, a
broad absorption feature is observed. Our analysis suggests that the low
frequency responses can be understood from two Drude components arising from
the partially filled Ru bands with different plasma frequencies and
scattering rates. The high frequency broad absorption may be contributed by two
interband transitions: from occupied Ru states to empty bands
and from the fully filled O 2p bands to unoccupied Ru states.Comment: 4 pages, 6 figure
Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12
The present work reports synthesis, as well as a detailed and careful
characterization of structural, magnetic, and dielectric properties of
differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this
purpose, neutron and x-ray powder diffraction, SQUID measurements, and
dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO
ceramics were investigated in great detail to document the influence of
low-level doping with 3d metals on the antiferromagnetic structure and
dielectric properties. In the light of possible magnetoelectric coupling in
these doped ceramics, the dielectric measurements were also carried out in
external magnetic fields up to 7 T, showing a minor but significant dependence
of the dielectric constant on the applied magnetic field. Undoped CCTO is
well-known for its colossal dielectric constant in a broad frequency and
temperature range. With the present extended characterization of doped as well
as undoped CCTO, we want to address the question why doping with only 1% Mn or
0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor
of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni
doping changes the dielectric properties only slightly. In addition,
diffraction experiments and magnetic investigations were undertaken to check
for possible correlations of the magnitude of the colossal dielectric constants
with structural details or with magnetic properties like the magnetic ordering,
the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that
while the magnetic ordering temperature and the effective moment of all
investigated CCTO ceramics are rather similar, there is a dramatic influence of
doping and tempering time on the Curie-Weiss constant.Comment: 10 pages, 11 figure
- …