7,161 research outputs found
GM crops and gender issues
Correspondence in the December issue by Jonathan Gressel not only states that gender issues in rural settings have not been adequately addressed with respect to weed control biotech but also asserts that such technology can increase the quality of life of rural women in developing countries. Improved weed control is a labor-saving technology that can result in less employment in a labor surplus rural economy. Often in rural areas, wage income is the main source of income and an important determinant of the quality of life, particularly where employment opportunities are generally limited. Apart from soil preparation, planting and weeding, harvesting is also 'femanual' work that can generate more employment if yields are higher. Biotech can enhance the quality of life of women but only if the technology is associated with overall generation of rural employment
Non-collinear Magnetic Order in the Double Perovskites: Double Exchange on a Geometrically Frustrated Lattice
Double perovskites of the form A_2BB'O_6 usually involve a transition metal
ion, B, with a large magnetic moment, and a non magnetic ion B'. While many
double perovskites are ferromagnetic, studies on the underlying model reveal
the possibility of antiferromagnetic phases as well driven by electron
delocalisation. In this paper we present a comprehensive study of the magnetic
ground state and T_c scales of the minimal double perovskite model in three
dimensions using a combination of spin-fermion Monte Carlo and variational
calculations. In contrast to two dimensions, where the effective magnetic
lattice is bipartite, three dimensions involves a geometrically frustrated face
centered cubic (FCC) lattice. This promotes non-collinear spiral states and
`flux' like phases in addition to collinear anti-ferromagnetic order. We map
out the possible magnetic phases for varying electron density, `level
separation' epsilon_B - epsilon_B', and the crucial B'-B' (next neighbour)
hopping t'.Comment: 15 pages pdflatex + 19 figs, revision: removed redundant comment
Addressing the Natural Resource Curse: An Illustration from Nigeria
Some natural resources -- oil and minerals in particular -- exert a negative and nonlinear impact on growth via their deleterious impact on institutional quality. We show this result to be very robust. The Nigerian experience provides telling confirmation of this aspect of natural resources. Waste and corruption from oil rather than Dutch disease has been responsible for its poor long run economic performance. We propose a solution for addressing this resource curse which involves directly distributing the oil revenues to the public. Even with all the difficulties of corruption and inefficiency that will no doubt plague its actual implementation, our proposal will, at the least, be vastly superior to the status quo. At best, however, it could fundamentally improve the quality of public institutions and, as a result, transform economics and politics in Nigeria.
Unconventional superconducting pairing symmetry induced by phonons
The possibility of non-s-wave superconductivity induced by phonons is
investigated using a simple model that is inspired by SrRuO. The model
assumes a two-dimensional electronic structure, a two-dimensional
spin-fluctuation spectrum, and three-dimensional electron-phonon coupling.
Taken separately, each interaction favors formation of spin-singlet pairs (of s
symmetry for the phonon interaction and d symmetry for the spin
interaction), but in combination, a variety of more unusual singlet and triplet
states are found, depending on the interaction parameters. This may have
important implications for SrRuO, providing a plausible explanation of
how the observed spin fluctuations, which clearly favor d pairing,
may still be instrumental in creating a superconducting state with a different
(e.g., p-wave) symmetry. It also suggests an interpretation of the large
isotope effect observed in SrRuO. These results indicate that phonons
could play a key role in establishing the order-parameter symmetry in
SrRuO, and possibly in other unconventional superconductors.Comment: 6 pages, 5 figures, submitted to Phys. Rev.
A Unified treatment of small and large- scale dynamos in helical turbulence
Helical turbulence is thought to provide the key to the generation of
large-scale magnetic fields. Turbulence also generically leads to rapidly
growing small-scale magnetic fields correlated on the turbulence scales. These
two processes are usually studied separately. We give here a unified treatment
of both processes, in the case of random fields, incorporating also a simple
model non-linear drift. In the process we uncover an interesting plausible
saturated state of the small-scale dynamo and a novel analogy between quantum
mechanical (QM) tunneling and the generation of large scale fields. The steady
state problem of the combined small/large scale dynamo, is mapped to a
zero-energy, QM potential problem; but a potential which, for non-zero mean
helicity, allows tunneling of bound states. A field generated by the
small-scale dynamo, can 'tunnel' to produce large-scale correlations, which in
steady state, correspond to a force-free 'mean' field.Comment: 4 pages, 1 figure, Physical Review Letters, in pres
Giant Meterwave Radio Telescope observations of an M2.8 flare: insights into the initiation of a flare-coronal mass ejection event
We present the first observations of a solar flare with the GMRT. An M2.8
flare observed at 1060 MHz with the GMRT on Nov 17 2001 was associated with a
prominence eruption observed at 17 GHz by the Nobeyama radioheliograph and the
initiation of a fast partial halo CME observed with the LASCO C2 coronograph.
Towards the start of the eruption, we find evidence for reconnection above the
prominence. Subsequently, we find evidence for rapid growth of a vertical
current sheet below the erupting arcade, which is accompanied by the flare and
prominence eruption.Comment: Accepted for publication in Solar Physic
Primordial Magnetic Field Limits from Cosmic Microwave Background Bispectrum of Magnetic Passive Scalar Modes
Primordial magnetic fields lead to non-Gaussian signals in the cosmic
microwave background (CMB) even at the lowest order, as magnetic stresses and
the temperature anisotropy they induce depend quadratically on the magnetic
field. In contrast, CMB non-Gaussianity due to inflationary scalar
perturbations arises only as a higher order effect. Apart from a compensated
scalar mode, stochastic primordial magnetic fields also produce scalar
anisotropic stress that remains uncompensated till neutrino decoupling. This
gives rise to an adiabatic-like scalar perturbation mode that evolves passively
thereafter (called the passive mode). We compute the CMB reduced bispectrum
() induced by this passive mode, sourced via the
Sachs-Wolfe effect, on large angular scales. For any configuration of
bispectrum, taking a partial sum over mode-coupling terms, we find a typical
value of , for a magnetic field of nG, assuming a nearly
scale-invariant magnetic spectrum . We also evaluate, in full, the bispectrum
for the squeezed collinear configuration over all angular mode-coupling terms
and find . These values are more than times larger than the
previously calculated magnetic compensated scalar mode CMB bispectrum.
Observational limits on the bispectrum from WMAP7 data allow us to set upper
limits of nG on the present value of the cosmic magnetic field of
primordial origin. This is over 10 times more stringent than earlier limits on
based on the compensated mode bispectrum.Comment: 9 page
Magneto and ferroelectric phase transitions in HoMn2O5 monocrystals
From the physical point of view multiferroics present an extremely
interesting class of systems and problems. These are essentially of two kinds.
One is what are the microscopic conditions, and sometimes constrains, which
determine the possibility to combine in one system both magnetic and
ferroelectric properties. This turned out to be a quite nontrivial question,
and usually, in conventional systems, these two phenomena tend to exclude one
another. Why it is the case is an important and still not completely resolved
issue. In the present article we report our results from magnetic properties
measurements on HoMn2O5 with short discussion about it possible origin
A model of driven and decaying magnetic turbulence in a cylinder
Using mean-field theory, we compute the evolution of the magnetic field in a
cylinder with outer perfectly conducting boundaries, an imposed axial magnetic
and electric field. The thus injected magnetic helicity in the system can be
redistributed by magnetic helicity fluxes down the gradient of the local
current helicity of the small-scale magnetic field. A weak reversal of the
axial magnetic field is found to be a consequence of the magnetic helicity flux
in the system. Such fluxes are known to alleviate so-called catastrophic
quenching of the {\alpha}-effect in astrophysical applications. Application to
the reversed field pinch in plasma confinement devices is discussed.Comment: 7 pages, 4 figures, submitted to Phys. Rev.
- …
