3 research outputs found

    Enhancing the photomixing efficiency of optoelectronic devices in the terahertz regime

    Get PDF
    A method to reduce the transit time of majority of carriers in photomixers and photo detectors to <1< 1 ps is proposed. Enhanced optical fields associated with surface plasmon polaritons, coupled with velocity overshoot phenomenon results in net decrease of transit time of carriers. As an example, model calculations demonstrating >280×> 280\times (or ∼\sim2800 and 31.8 μ\muW at 1 and 5 THz respectively) improvement in THz power generation efficiency of a photomixer based on Low Temperature grown GaAs are presented. Due to minimal dependence on the carrier recombination time, it is anticipated that the proposed method paves the way for enhancing the speed and efficiency of photomixers and detectors covering UV to far infrared communications wavelengths (300 to 1600 nm).Comment: 5 pages, 4 figure

    Orientational Glasses: NMR and Electric Susceptibility Studies

    No full text
    We review the results of a wide range of nuclear magnetic resonance (NMR)measurements of the local order parameters and the molecular dynamics of solid ortho-para hydrogen mixtures and solid nitrogen-argon mixtures that form novel molecular orientational glass states at low temperatures. From the NMR measurements, the distribution of the order parameters can be deduced and, in terms of simple models, used to analyze the thermodynamic measurements of the heat capacities of these systems. In addition, studies of the dielectric susceptibilities of the nitrogen-argon mixtures are reviewed in terms of replica symmetry breaking analogous to that observed for spin glass states. It is shown that this wide set of experimental results is consistent with orientation or quadrupolar glass ordering of the orientational degrees of freedom
    corecore