127 research outputs found

    Mechanical Characterization of the Heat Affected Zone of Gold Wirebonds Using Nanoindentation

    Get PDF
    With increasing miniaturization in microelectronics the wirebonds used in IC packages are witnessing a thrust towards fine pitch wirebonding. To have a precise control over loop height of the wirebond for fine pitch wirebonding, it is imperative to do mechanical characterization of the wirebond. The present work studies the mechanical properties of gold wire and wirebond using nanoindentation. The wirebond specimen surface was planarized using mechanical polishing. The loop height of the gold wirebond is directly proportional to the length of the heat affected zone (HAZ) above the ball of gold wirebond. Metallographic preparation of gold wirebond cross section reveals the presence of undesirable coarse grain structure in HAZ due to recrystallization and grain growth in the gold wire adjacent to the ball. The recrystallization temperature of our gold wire was found using D.S.C. to be 340.66°C. The doping elements present in the gold wire used, were identified using TOF-SIMS. Nanoindentation of the gold wire was done at different maximum loads to observe the hardness variation with load. The nanoindentation of gold wirebond has confirmed a v-shaped hardness profile in the HAZ. The hardness minima for the particular gold wire used with a ball size ratio of 2.4 was observed at distance of 160-170 µm from the neck of the ball. The elastic modulus was found to vary randomly and to be independent of the microstructure in the wirebond. A yield stress profile based on empirical hardness-yield strength correlation has been predicted for the gold wirebond.Singapore-MIT Alliance (SMA

    Computational Biorheology of Human Blood Flow in Health and Disease

    Get PDF
    Hematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on dissipative particle dynamics (DPD) which has broad applicability in cell biophysics with implications for diagnostics, therapeutics and drug efficacy assessments for a wide variety of human diseases. This computational approach, validated by independent experimental results, is capable of modeling the biorheology of whole blood and its individual components during blood flow so as to investigate cell mechanistic processes in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to arterioles and can also be used to model RBCs down to the spectrin level. We start from experimental measurements of a single RBC to extract the relevant biophysical parameters, using single-cell measurements involving such methods as optical tweezers, atomic force microscopy and micropipette aspiration, and cell-population experiments involving microfluidic devices. We then use these validated RBC models to predict the biorheological behavior of whole blood in healthy or pathological states, and compare the simulations with experimental results involving apparent viscosity and other relevant parameters. While the approach discussed here is sufficiently general to address a broad spectrum of hematologic disorders including certain types of cancer, this paper specifically deals with results obtained using this computational framework for blood flow in malaria and sickle cell anemia.National Institutes of Health (U.S.)Singapore-MIT Alliance for Research and Technology (SMART)United States. Dept. of Energy. Collaboratory on Mathematics for Mesoscopic Modeling of MaterialsUnited States. Dept. of Energy (INCITE Award

    Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis

    Get PDF
    We developed a microfluidics-based model to quantify cell-level processes modulating the pathophysiology of sickle cell disease (SCD). This in vitro model enabled quantitative investigations of the kinetics of cell sickling, unsickling, and cell rheology. We created short-term and long-term hypoxic conditions to simulate normal and retarded transit scenarios in microvasculature. Using blood samples from 25 SCD patients with sickle hemoglobin (HbS) levels varying from 64 to 90.1%, we investigated how cell biophysical alterations during blood flow correlated with hematological parameters, HbS level, and hydroxyurea (HU) therapy. From these measurements, we identified two severe cases of SCD that were also independently validated as severe from a genotype-based disease severity classification. These results point to the potential of this method as a diagnostic indicator of disease severity. In addition, we investigated the role of cell density in the kinetics of cell sickling. We observed an effect of HU therapy mainly in relatively dense cell populations, and that the sickled fraction increased with cell density. These results lend support to the possibility that the microfluidic platform developed here offers a unique and quantitative approach to assess the kinetic, rheological, and hematological factors involved in vasoocclusive events associated with SCD and to develop alternative diagnostic tools for disease severity to supplement other methods. Such insights may also lead to a better understanding of the pathogenic basis and mechanism of drug response in SCD.National Institutes of Health (U.S.) (R01HL094270)National Institutes of Health (U.S.) (U01HL114476

    Electric impedance microflow cytometry for characterization of cell disease states

    Get PDF
    The electrical properties of biological cells have connections to their pathological states. Here we present an electric impedance microflow cytometry (EIMC) platform for the characterization of disease states of single cells. This platform entails a microfluidic device for a label-free and non-invasive cell-counting assay through electric impedance sensing. We identified a dimensionless offset parameter δ obtained as a linear combination of a normalized phase shift and a normalized magnitude shift in electric impedance to differentiate cells on the basis of their pathological states. This paper discusses a representative case study on red blood cells (RBCs) invaded by the malaria parasite Plasmodium falciparum. Invasion by P. falciparum induces physical and biochemical changes on the host cells throughout a 48-h multi-stage life cycle within the RBC. As a consequence, it also induces progressive changes in electrical properties of the host cells. We demonstrate that the EIMC system in combination with data analysis involving the new offset parameter allows differentiation of P. falciparum infected RBCs from uninfected RBCs as well as among different P. falciparum intraerythrocytic asexual stages including the ring stage. The representative results provided here also point to the potential of the proposed experimental and analysis platform as a valuable tool for non-invasive diagnostics of a wide variety of disease states and for cell separation.Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology)Massachusetts Institute of Technology. Center for Integrated Circuits and SystemsNational Institutes of Health (U.S.) (Grant R01 HL094270

    De Novo Generated Human Red Blood Cells in Humanized Mice Support Plasmodium falciparum Infection

    Get PDF
    Immunodeficient mouse–human chimeras provide a powerful approach to study host specific pathogens like Plasmodium (P.) falciparum that causes human malaria. Existing mouse models of P. falciparum infection require repeated injections of human red blood cells (RBCs). In addition, clodronate lipsomes and anti-neutrophil antibodies are injected to suppress the clearance of human RBCs by the residual immune system of the immunodeficient mice. Engraftment of NOD-scid Il2rg[superscript -/-] mice with human hematopoietic stem cells leads to reconstitution of human immune cells. Although human B cell reconstitution is robust and T cell reconstitution is reasonable in the recipient mice, human RBC reconstitution is generally poor or undetectable. The poor reconstitution is mainly the result of a deficiency of appropriate human cytokines that are necessary for the development and maintenance of these cell lineages. Delivery of plasmid DNA encoding human erythropoietin and interleukin-3 into humanized mice by hydrodynamic tail-vein injection resulted in significantly enhanced reconstitution of erythrocytes. With this improved humanized mouse, here we show that P. falciparum infects de novo generated human RBCs, develops into schizonts and causes successive reinvasion. We also show that different parasite strains exhibit variation in their ability to infect these humanized mice. Parasites could be detected by nested PCR in the blood samples of humanized mice infected with P. falciparum K1 and HB3 strains for 3 cycles, whereas in other strains such as 3D7, DD2, 7G8, FCR3 and W2mef parasites could only be detected for 1 cycle. In vivo adaptation of K1 strain further improves the infection efficiency and parasites can be detected by microscopy for 3 cycles. The parasitemia ranges between 0.13 and 0.25% at the first cycle of infection, falls between 0.08 and 0.15% at the second cycle, and drops to barely detectable levels at the third cycle of infection. Compared to existing mouse models, our model generates human RBCs de novo and does not require the treatment of mice with immunomodulators.Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology

    Cell separation using tilted-angle standing surface acoustic waves

    Get PDF
    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ~99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ~97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.National Institutes of Health (U.S.) (Grant U01HL114476)National Institutes of Health (U.S.) (New Innovator Award 1DP2OD007209-01)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Grant DMR-0820404

    Sliding of coherent twin boundaries

    Get PDF
    Coherent twin boundaries (CTBs) are internal interfaces that can play a key role in markedly enhancing the strength of metallic materials while preserving their ductility. They are known to accommodate plastic deformation primarily through their migration, while experimental evidence documenting large-scale sliding of CTBs to facilitate deformation has thus far not been reported. We show here that CTB sliding is possible whenever the loading orientation enables the Schmid factors of leading and trailing partial dislocations to be comparable to each other. This theoretical prediction is confirmed by real-Time transmission electron microscope experimental observations during uniaxial deformation of copper pillars with different orientations and is further validated at the atomic scale by recourse to molecular dynamics simulations. Our findings provide mechanistic insights into the evolution of plasticity in heavily twinned face-centered cubic metals, with the potential for optimizing mechanical properties with nanoscale CTBs in material design

    Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals

    Get PDF
    When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. Here we demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. This “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising from increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. These results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen.National Science Foundation (U.S.) (Grant DMR-1120901)National Science Foundation (U.S.) (DMR-1410636)Singapore-MIT Allianc

    Isolation of exosomes from whole blood by integrating acoustics and microfluidics

    Get PDF
    Exosomes are nanoscale extracellular vesicles that play an important role in many biological processes, including intercellular communications, antigen presentation, and the transport of proteins, RNA, and other molecules. Recently there has been significant interest in exosome-related fundamental research, seeking new exosome-based biomarkers for health monitoring and disease diagnoses. Here, we report a separation method based on acoustofluidics (i.e., the integration of acoustics and microfluidics) to isolate exosomes directly from whole blood in a label-free and contact-free manner. This acoustofluidic platform consists of two modules: a microscale cell-removal module that first removes larger blood components, followed by extracellular vesicle subgroup separation in the exosome-isolation module. In the cell-removal module, we demonstrate the isolation of 110-nm particles from a mixture of micro- and nanosized particles with a yield greater than 99%. In the exosome-isolation module, we isolate exosomes from an extracellular vesicle mixture with a purity of 98.4%. Integrating the two acoustofluidic modules onto a single chip, we isolated exosomes from whole blood with a blood cell removal rate of over 99.999%. With its ability to perform rapid, biocompatible, label-free, contact-free, and continuous-flow exosome isolation, the integrated acoustofluidic device offers a unique approach to investigate the role of exosomes in the onset and progression of human diseases with potential applications in health monitoring, medical diagnosis, targeted drug delivery, and personalized medicine. Keywords: extracellular vesicles; exosomes; blood-borne vesicles; surface acoustic waves; acoustic tweezersNational Science Foundation (U.S.) (Grant R01 HD086325)National Science Foundation (U.S.) (Grant IIP-1534645

    Acoustic separation of circulating tumor cells

    Get PDF
    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (~100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.National Institutes of Health (U.S.) (Grant 1 R01 GM112048-01A1)National Institutes of Health (U.S.) (Grant 1R33EB019785-01)National Science Foundation (U.S.)Penn State Center for Nanoscale Science (Materials Research Science and Engineering Center Grant DMR-0820404)National Institutes of Health (U.S.) (Grant U01HL114476
    • …
    corecore