1,475 research outputs found

    N=4 Supersymmetric Yang-Mills Multiplet in Non-Adjoint Representations

    Full text link
    We formulate a theory for N=4 supersymmetric Yang-Mills multiplet in a non-adjoint representation R of SO(N) as an important application of our recently-proposed model for N=1 supersymmetry. This system is obtained by dimensional reduction from an N=1 supersymmetric Yang-Mills multiplet in non-adjoint representation in ten dimensions. The consistency with supersymmetry requires that the non-adjoint representation R with the indices i, j, ... satisfy the three conditions \eta^{i j} = \delta^{i j}, (T^I)^{i j} = - (T^I)^{j i} and (T^I)^{[ i j |} (T^I)^{| k ] l} = 0 for the metric \eta^{i j} and the generators T^I, which are the same as the N=1 case.Comment: 6 pages, no figures, accepted for publication in Phys. Rev.

    Advertising Beliefs and Attitudes: Are Students and General Consumers Indeed Different?

    Get PDF
    Studies of advertising beliefs and attitudes are crucial because these measures are shown to affect brand attitudes and purchase intentions. Previous studies in this area used either student or general consumers samples; no comparisons were made between the two groups. Therefore, it is not known whether and to what extent responses of student samples are likely to differ from those of general consumers. Differences would indicate that the two segments view advertising dissimilarly. However, by applying covariance structure analysis on a sample of students and a sample of general consumers from India, our study found no significant differences between them in their beliefs toward advertising in general, attitudes toward the institution of advertising, attitudes toward the instrument of advertising, or attitudes toward advertising in general

    Self-Dual Yang-Mills and Vector-Spinor Fields, Nilpotent Fermionic Symmetry, and Supersymmetric Integrable Systems

    Full text link
    We present a system of a self-dual Yang-Mills field and a self-dual vector-spinor field with nilpotent fermionic symmetry (but not supersymmetry) in 2+2 dimensions, that generates supersymmetric integrable systems in lower dimensions. Our field content is (A_\mu{}^I, \psi_\mu{}^I, \chi^{I J}), where I and J are the adjoint indices of arbitrary gauge group. The \chi^{I J} is a Stueckelberg field for consistency. The system has local nilpotent fermionic symmetry with the algebra \{N_\alpha{}^I, N_\beta{}^J \} = 0. This system generates supersymmetric Kadomtsev-Petviashvili equations in D=2+1, and supersymmetric Korteweg-de Vries equations in D=1+1 after appropriate dimensional reductions. We also show that a similar self-dual system in seven dimensions generates self-dual system in four dimensions. Based on our results we conjecture that lower-dimensional supersymmetric integral models can be generated by non-supersymmetric self-dual systems in higher dimensions only with nilpotent fermionic symmetries.Comment: 15 pages, no figure

    Bilateral nonthrombotic subclavian vein obstruction causing upper extremity venous claudication

    Get PDF
    Venous complications of thoracic outlet obstruction are frequently the result of acute axillosubclavian vein thrombosis, leading to symptoms consistent with venous claudication, including pain, swelling, and cyanotic discoloration. Nonthrombotic subclavian vein obstruction, however, is an uncommon cause of veno-occlusive symptoms. We report the case of a patient who, while running, developed pain consistent with venous claudication in her left arm and subsequently in her right arm. Clinical and hemodynamic evaluation revealed nonthrombotic subclavian vein obstruction, which was relieved by thoracic outlet decompression following first rib resection

    Aleph_null Hypergravity in Three-Dimensions

    Full text link
    We construct hypergravity theory in three-dimensions with the gravitino \psi_{\mu m_1... m_n}{}^A with an arbitrary half-integral spin n+3/2, carrying also the index A for certain real representations of any gauge group G. The possible real representations are restricted by the condition that the matrix representation of all the generators are antisymmetric: (T^I)^{A B} = - (T^I)^{B A}. Since such a real representation can be arbitrarily large, this implies \aleph_0-hypergravity with infinitely many (\aleph_0) extended local hypersymmetries.Comment: 12 pages, no figure

    Non-Abelian Tensors with Consistent Interactions

    Full text link
    We present a systematic method for constructing consistent interactions for a tensor field of an arbitrary rank in the adjoint representation of an arbitrary gauge group in any space-time dimensions. This method is inspired by the dimensional reduction of Scherk-Schwarz, modifying field strengths with certain Chern-Simons forms, together with modified tensorial gauge transformations. In order to define a consistent field strength of a r-rank tensor B_{\mu_1...\mu_r}^I in the adjoint representation, we need the multiplet (B_{\mu_1...\mu_r}^I, B_{\mu_1...\mu_{r-1}}^{I J}, ..., B_\mu^{I_1...I_r}, B^{I_1... I_{r+1}}). The usual problem of consistency of the tensor field equations is circumvented in this formulation.Comment: 15 pages, no figure

    Quantum Information and Entropy

    Get PDF
    Thermodynamic entropy is not an entirely satisfactory measure of information of a quantum state. This entropy for an unknown pure state is zero, although repeated measurements on copies of such a pure state do communicate information. In view of this, we propose a new measure for the informational entropy of a quantum state that includes information in the pure states and the thermodynamic entropy. The origin of information is explained in terms of an interplay between unitary and non-unitary evolution. Such complementarity is also at the basis of the so-called interaction-free measurement.Comment: 21 pages, 3 figure

    Scattering due to Plasmas

    Get PDF
    corecore