37 research outputs found
Supermagnetism in magnetic nanoparticle systems
Nanoscale magnetic materials are of interest for applications in ferrofluids, high-density magnetic storage, high-frequency electronics, high performance permanent magnets, and,
magnetic refrigerants. Magnetic single-domain nanoparticles (âsuperspins) are very interesting not only for potential applications, e.g. high density storage devices, but also for
fundamental research in magnetism. In an ensemble of nanoparticles in which the interparticle magnetic interactions are sufficiently small, the system shows superparamagnetic (SPM) behavior as described by the NĂ©el-Brown model. On the contrary, when interparticle
interactions are non-negligible, the system eventually shows collective behavior, which overcomes the individual anisotropy properties of the particles. In order to address the effect of interactions, we have investigated two different magnetic nanoparticle
systems.
The first part of this thesis focuses on the magnetic properties of ensembles of magnetic single-domain nanoparticles in an insulating matrix. The samples have a granular multilayer structure prepared as discontinuous metal-insulator multilayers (DMIM) [Co80Fe20 (tn)/Al2O3 (3nm)]m where the nominal thickness of CoFe is varied in the range
0.5 ÂŁ tn ÂŁ 1.8 nm, and the number of bilayers m is varied between 1- 10. The DMIMs represent a model system to study the effect of inter-particle interactions by varying the nominal thickness which corresponds to the magnetic particle concentration. The structural
properties are investigated by transmission electron microscopy, small angle X-ray reflectivity and electric conductivity measurements. It is found that CoFe forms wellseparated and quasi-spherical nanoparticles in the Al2O3 matrix, and the samples exhibit a regular multilayer structure. The magnetic properties are investigated by means of dc
magnetization, ac susceptibility, polarized neutron reflectometry (PNR), magneto-optic Kerr effect and ferromagnetic resonance. The DMIM system with the lowest tn = 0.5 nm, in which the inter-particle interaction is almost negligible, single particle blocking has been
observed. When increasing the nominal thickness to tn = 0.7 nm and, hence, increasing the inter-particle interaction, the system shows spin glasslike cooperative freezing of magnetic
moments at low temperatures. Superspin glass properties have been evidenced by static and dynamic criticality studies such as memory and rejuvenation. With further increase of nominal thickness and hence stronger interaction, the system shows a superferromagnetic
(SFM) state, e.g., at tn = 1.3 nm. A SFM domain state has been evidenced by Cole-Cole analysis of the ac susceptibility and polarized neutron reflectivity measurements. Finally, the SFM domains have been imaged by synchrotron based photoemission electron microscopy (PEEM) and magneto-optic Kerr microscopy. Stripe domains stretched along
the easy in-plane axis, but exhibiting irregular walls and hole- like internal structures (âdomains in domainsâ) are revealed. They shrink and expand, respectively, preferentially by sideways motion of the long domain walls as expected in a longitudinal field. The SFM
domain state is explained by dipolar interaction and tunneling exchange between the large particles mediated by ultrasmall atomically small magnetic clusters. These have been evidenced by their sizable paramagnetic contributions, first in systems referring to tn = 0.5
nm and 0.7 nm, but later on also at SFM coverages, tn = 1.3 nm and at higher coverages. These ultrasmall particles (atoms?) are undetectable in transmission electron microscopy. At tn = 1.4 nm, physical percolation occurs and a conventional three-dimensional
(3D) ferromagnetic phase with Ohmic conduction is encountered. Polarized neutron reflectivity and magnetometry studies have been performed on the DMIM sample with tn = 1.6 nm which exhibits dominant dipolar coupling between the ferromagnetic layers. Our PNR measurements at the coercive field reveal a novel and unexpected magnetization state of the sample exhibiting a modulated magnetization depth profile from CoFe layer to layer with a period of five bilayers along the multilayer stack. With the help of micromagnetic
simulations we demonstrate that competition between long and short-ranged dipolar interactions apparently gives rise to this unusual phenomenon.
In the second part of the thesis the structural and magnetic properties of FeCo nanoparticles in liquid hexane will be analyzed for two different concentrations of the ferrofluids. Inter-particle SFM ordering between FeCo nanoparticles are evidenced by magnetization measurements and ac susceptibility measurements. Mössbauer spectroscopy measurements are shown to evidence collective inter-particle correlations between the nanoparticles.Magnetische Materialien auf der Nanoskala sind von hohem Interesse in zahlreichen
Anwendungen, wie z.B. Ferrofluiden, Speichermedien, Hochfrequenzelektronik, Permanentmagneten und magnetischen KĂŒhlmitteln. So sind insbesondere magnetisch eindomĂ€nige Nanopartikel ("superspins") nicht nur fĂŒr Anwendungen, wie z.B. in der
Speichertechnologie interessant, sondern auch fĂŒr das GrundlagenverstĂ€ndnis im Magnetismus. In einem Ensemble von Nanopartikeln mit genĂŒgend kleiner magnetischer
Wechselwirkung zwischen den Partikeln, zeigt das System superparamagnetisches (SPM) Verhalten, welches durch das NĂ©el-Brown- Modell beschrieben werden kann. Umgekehrt, wenn die Inter-Partikel-Wechselwirkungen nicht vernachlĂ€ssigbar sind, zeigt es kollektives Verhalten, welches dabei die individuellen Anisotropieeigenschaften der Partikel ĂŒberwindet. Um diesem Effekt der Wechselwirkungen nachzugehen, haben wir zwei unterschiedliche Nanopartikelsysteme untersucht. Der erste Teil dieser Arbeit behandelt die Eigenschaften von Ensembles von magnetisch eindomĂ€nigen Nanopartikeln in einer isolierenden Matrix. Die Proben haben
eine granulare Multilagenstruktur, die als diskontinuierliche Metall-Isolator-Vielfachschichten (DMIMs) der Form [Co80Fe20 (tn)/Al2O3(3nm)]m hergestellt werden. Die nominelle Dicke der CoFe-Schicht liegt dabei im Bereich 0.5 ÂŁ tn ÂŁ 1.8 nm und die
Anzahl der Bilagen im Bereich 1 < m < 10. Diese DMIMs stellen ein hervorragendes Modell-System zum Untersuchen des Effekts der Inter-Partikel-Wechselwirkungen dar. Die nominelle Dicke entspricht hierbei der Partikelkonzentration. Die strukturellen
Eigenschaften wurden mit Hilfe von Transmissionselektronenmikoskopie (TEM), Kleinwinkel-Röntgen-Streuung und elektrischen Transportmessungen studiert. So findet man, dass das CoFe getrennte und nahezu sphÀrische Nanopartikel in der Al2O3-Matrix bildet, und das ganze System eine exzellente Multilagenstruktur aufweist. Die
magnetischen Eigenschaften wurden mittels DC-Magnetisierung, AC-SuszeptibilitĂ€t, DCRelaxation, magneto-optischem Kerr-Effekt (MOKE) und ferromagnetischer Resonanz untersucht. Im DMIM-System mit der niedrigsten nominelle Dicke, tn = 0.5 nm, und somit kleinster Inter-Partikel-Wechselwirkung wurde individuelles Blocking (SPM-Verhalten) gefunden. Bei einem gröĂeren Wert von tn = 0.7 nm, und somit stĂ€rkeren Wechselwirkungen, zeigt das System spinglas-artiges kooperatives Einfrieren der magnetischen Partikelmomente bei niedrigen Temperaturen. Diese 'Superspinglas'- Eigenschaften wurden nachgewiesen durch statische und dynamische Untersuchungen, wie z.B. den Memory- und Rejuvenation-Effekt. Bei weiterer VergröĂerung der nominellen
Dicke und somit stÀrkeren Wechselwirkungen zeigt das Ensemble einen
superferromagnetischen (SFM) Zustand. Dieser SFM-DomÀnen-Zustand wurde
nachgewiesen durch eine Cole-Cole-Plot-Analyze der AC-SuszeptibilitÀt und durch polarisierte Neutronenreflektometrie (PNR). Es ist sogar gelungen diese SFM-DomÀnen direkt durch Photoelektronen-Emissionsmikroskopie (PEEM) an einem Synchrotron und
MOKE-Mikroskopie darzustellen. Sichtbar sind StreifendomĂ€nen entlang der leichten planaren Achse, jedoch mit unregelmĂ€Ăigen WĂ€nden und loch-artigen Strukturen ("DomĂ€nen in DomĂ€nen") Wie erwartet wachsen bzw. schrumpfen die DomĂ€nen vorzugsweise durch seitliche Bewegung der langen WĂ€nde in einem longitudinalen Feld. Der SFM-DomĂ€nenzustand kann erklĂ€rt werden durch Dipol- und Tunnelaustausch-Wechselwirkung der Partikel sowie Wechselwirkungen ĂŒber atomare magnetische Cluster.
Diese extrem kleinen Cluster wurden durch deren paramagnetischen Beitrag zunÀchst in Systemen mit tn = 0.5 nm und 0.7 nm nachgewiesen, dann aber auch in SFM-Systemen mit tn = 1.3 nm. In beiden FÀllen sind sie nicht durch TEM nachweisbar.
Bei tn = 1.4 nm findet strukturelle Perkolation der Partikel statt und es wird eine gewöhnliche drei-dimensionale (3D) ferromagnetische Phase mit Ohm'schen Widerstand gefunden. PNR und Magnetisierungs-Messungen an der DMIM-Probe mit tn = 1.6 nm zeigen dominante dipolare Kopplung der ferromagnetischen Lagen. So zeigen die PNR Daten nahe der KoerzitivfeldstÀrke einen neuartigen und unerwarteten Zustand, bei dem
ein moduliertes Magnetisierungs-Profil im Multilagenstapel vorzufinden ist. Mit Hilfe von mikromagnetischen Simulationen konnten wir zeigen, dass eine Konkurrenz zwischen langreichweitiger und kurzreichweitiger (NĂ©el-) Dipol-Kopplung fĂŒr diesen Zustand verantwortlich ist.
Im zweiten Teil meiner Arbeit wurden die strukturellen und magnetischen Eigenschaften von FeCo-Nanopartikel in flĂŒssigem Hexan mit zwei unterschiedlichen Konzentrationen untersucht. Eine Inter-Partikel SFM-Ordnung wurde mittels Magnetisierungs- und AC-SuszeptibilitĂ€ts-Messungen nachgewiesen. Mössbauer-
Spektroskopieuntersuchungen zeigen ebenso kollektive Inter-Partikel-Korrelationen
Efficient Control of Magnetization Dynamics Via W/CuO Interface
Magnetization dynamics, which determine the speed of magnetization switching
and spin information propagation, play a central role in modern spintronics.
Gaining its control will satisfy the different needs of various spintronic
devices. In this work, we demonstrate that the surface oxidized Cu
(CuO) can be employed for the tunability of magnetization dynamics
of ferromagnet (FM)/heavy metal (HM) bilayer system. The capping CuO
layer in CoFeB/W/CuO trilayer reduces the magnetic damping value in
comparison with the CoFeB/W bilayer. The magnetic damping even becomes lower
than that of the CoFeB/CuO by ~ 16% inferring the stabilization of
anti-damping phenomena. Further, the reduction in damping is accompanied by a
very small reduction in the spin pumping-induced output DC voltage in the
CoFeB/W/CuO trilayer. The simultaneous observation of anti-damping
and spin-to-charge conversion can be attributed to the orbital Rashba effect
observed at the HM/CuO interface. Our experimental findings
illustrate that the cost-effective CuO can be employed as an
integral part of modern spintronics devices owing to its rich underneath
spin-orbital physics
Structural deformation and irreversible magnetic properties of flexible Co/Pt and Co/Pd thin films
The successful commercialization of flexible spintronic devices requires a
complete understanding of the impact of external strain on the structural,
electronic, and magnetic properties of a system. The impact of bending-induced
strain on flexible films is studied quite well. However, little is known about
the effect of other modes of flexibility, e.g., wrinkling, twisting, peeling,
and stretching on the functional properties of flexible films. In this context,
perpendicular magnetic anisotropic Co/Pt and Co/Pd thin films are prepared on
flexible Kapton substrates, and the impact of the peeling mode is studied in
detail. The peeling method generates numerous cracks, and buckling in the thin
film, along with localized blister formation imaged by scanning electron
microscopy. Further, the resistivity measurement confirms a significant
enhancement in sample resistance owing to the severe damage of the films. The
structural discontinuities strongly affect the magnetization reversal phenomena
as measured by the magneto-optic Kerr effect (MOKE)-based microscopy. The
bubble domains got converted to elongated-shaped domains due to several
hindrances to the wall motion after strain application. Further, the relaxation
measurements reveal that the thermal energy is insufficient to switch the
magnetization at a few areas due to their high pinning potential associated
with the damages. In contrast to bending-induced strain, here, all the
modifications in the functional properties are found to be irreversible in
nature
Molecular Hybridization Induced Antidamping and Sizable Enhanced Spin-to-Charge Conversion in Co20Fe60B20/-W/C60 Heterostructures
Development of power efficient spintronics devices has been the compelling
need in the post-CMOS technology era. The effective tunability of
spin-orbit-coupling (SOC) in bulk and at the interfaces of hybrid materials
stacking is a prerequisite for scaling down the dimension and power consumption
of these devices. In this work, we demonstrate the strong chemisorption of C60
molecules when grown on the high SOC -W layer. The parent CFB/-W
bilayer exhibits large spin-to-charge interconversion efficiency, which can be
ascribed to the interfacial SOC observed at the Ferromagnet/Heavy metal
interface. Further, the adsorption of C60 molecules on -W reduces the
effective Gilbert damping by 15% in the CFB/-W/C60
heterostructures. The anti-damping is accompanied by a gigantic 115%
enhancement in the spin-pumping induced output voltage owing to the molecular
hybridization. The non-collinear Density Functional Theory calculations confirm
the long-range enhancement of SOC of -W upon the chemisorption of C60
molecules, which in turn can also enhance the SOC at the CFB/-W
interface in CFB/-W/C60 heterostructures. The combined amplification of
bulk as well interfacial SOC upon molecular hybridization stabilizes the
anti-damping and enhanced spin-to-charge conversion, which can pave the way for
the fabrication of power efficient spintronics devices