37 research outputs found

    Supermagnetism in magnetic nanoparticle systems

    Get PDF
    Nanoscale magnetic materials are of interest for applications in ferrofluids, high-density magnetic storage, high-frequency electronics, high performance permanent magnets, and, magnetic refrigerants. Magnetic single-domain nanoparticles (“superspins) are very interesting not only for potential applications, e.g. high density storage devices, but also for fundamental research in magnetism. In an ensemble of nanoparticles in which the interparticle magnetic interactions are sufficiently small, the system shows superparamagnetic (SPM) behavior as described by the NĂ©el-Brown model. On the contrary, when interparticle interactions are non-negligible, the system eventually shows collective behavior, which overcomes the individual anisotropy properties of the particles. In order to address the effect of interactions, we have investigated two different magnetic nanoparticle systems. The first part of this thesis focuses on the magnetic properties of ensembles of magnetic single-domain nanoparticles in an insulating matrix. The samples have a granular multilayer structure prepared as discontinuous metal-insulator multilayers (DMIM) [Co80Fe20 (tn)/Al2O3 (3nm)]m where the nominal thickness of CoFe is varied in the range 0.5 ÂŁ tn ÂŁ 1.8 nm, and the number of bilayers m is varied between 1- 10. The DMIMs represent a model system to study the effect of inter-particle interactions by varying the nominal thickness which corresponds to the magnetic particle concentration. The structural properties are investigated by transmission electron microscopy, small angle X-ray reflectivity and electric conductivity measurements. It is found that CoFe forms wellseparated and quasi-spherical nanoparticles in the Al2O3 matrix, and the samples exhibit a regular multilayer structure. The magnetic properties are investigated by means of dc magnetization, ac susceptibility, polarized neutron reflectometry (PNR), magneto-optic Kerr effect and ferromagnetic resonance. The DMIM system with the lowest tn = 0.5 nm, in which the inter-particle interaction is almost negligible, single particle blocking has been observed. When increasing the nominal thickness to tn = 0.7 nm and, hence, increasing the inter-particle interaction, the system shows spin glasslike cooperative freezing of magnetic moments at low temperatures. Superspin glass properties have been evidenced by static and dynamic criticality studies such as memory and rejuvenation. With further increase of nominal thickness and hence stronger interaction, the system shows a superferromagnetic (SFM) state, e.g., at tn = 1.3 nm. A SFM domain state has been evidenced by Cole-Cole analysis of the ac susceptibility and polarized neutron reflectivity measurements. Finally, the SFM domains have been imaged by synchrotron based photoemission electron microscopy (PEEM) and magneto-optic Kerr microscopy. Stripe domains stretched along the easy in-plane axis, but exhibiting irregular walls and hole- like internal structures (“domains in domains”) are revealed. They shrink and expand, respectively, preferentially by sideways motion of the long domain walls as expected in a longitudinal field. The SFM domain state is explained by dipolar interaction and tunneling exchange between the large particles mediated by ultrasmall atomically small magnetic clusters. These have been evidenced by their sizable paramagnetic contributions, first in systems referring to tn = 0.5 nm and 0.7 nm, but later on also at SFM coverages, tn = 1.3 nm and at higher coverages. These ultrasmall particles (atoms?) are undetectable in transmission electron microscopy. At tn = 1.4 nm, physical percolation occurs and a conventional three-dimensional (3D) ferromagnetic phase with Ohmic conduction is encountered. Polarized neutron reflectivity and magnetometry studies have been performed on the DMIM sample with tn = 1.6 nm which exhibits dominant dipolar coupling between the ferromagnetic layers. Our PNR measurements at the coercive field reveal a novel and unexpected magnetization state of the sample exhibiting a modulated magnetization depth profile from CoFe layer to layer with a period of five bilayers along the multilayer stack. With the help of micromagnetic simulations we demonstrate that competition between long and short-ranged dipolar interactions apparently gives rise to this unusual phenomenon. In the second part of the thesis the structural and magnetic properties of FeCo nanoparticles in liquid hexane will be analyzed for two different concentrations of the ferrofluids. Inter-particle SFM ordering between FeCo nanoparticles are evidenced by magnetization measurements and ac susceptibility measurements. Mössbauer spectroscopy measurements are shown to evidence collective inter-particle correlations between the nanoparticles.Magnetische Materialien auf der Nanoskala sind von hohem Interesse in zahlreichen Anwendungen, wie z.B. Ferrofluiden, Speichermedien, Hochfrequenzelektronik, Permanentmagneten und magnetischen KĂŒhlmitteln. So sind insbesondere magnetisch eindomĂ€nige Nanopartikel ("superspins") nicht nur fĂŒr Anwendungen, wie z.B. in der Speichertechnologie interessant, sondern auch fĂŒr das GrundlagenverstĂ€ndnis im Magnetismus. In einem Ensemble von Nanopartikeln mit genĂŒgend kleiner magnetischer Wechselwirkung zwischen den Partikeln, zeigt das System superparamagnetisches (SPM) Verhalten, welches durch das NĂ©el-Brown- Modell beschrieben werden kann. Umgekehrt, wenn die Inter-Partikel-Wechselwirkungen nicht vernachlĂ€ssigbar sind, zeigt es kollektives Verhalten, welches dabei die individuellen Anisotropieeigenschaften der Partikel ĂŒberwindet. Um diesem Effekt der Wechselwirkungen nachzugehen, haben wir zwei unterschiedliche Nanopartikelsysteme untersucht. Der erste Teil dieser Arbeit behandelt die Eigenschaften von Ensembles von magnetisch eindomĂ€nigen Nanopartikeln in einer isolierenden Matrix. Die Proben haben eine granulare Multilagenstruktur, die als diskontinuierliche Metall-Isolator-Vielfachschichten (DMIMs) der Form [Co80Fe20 (tn)/Al2O3(3nm)]m hergestellt werden. Die nominelle Dicke der CoFe-Schicht liegt dabei im Bereich 0.5 ÂŁ tn ÂŁ 1.8 nm und die Anzahl der Bilagen im Bereich 1 < m < 10. Diese DMIMs stellen ein hervorragendes Modell-System zum Untersuchen des Effekts der Inter-Partikel-Wechselwirkungen dar. Die nominelle Dicke entspricht hierbei der Partikelkonzentration. Die strukturellen Eigenschaften wurden mit Hilfe von Transmissionselektronenmikoskopie (TEM), Kleinwinkel-Röntgen-Streuung und elektrischen Transportmessungen studiert. So findet man, dass das CoFe getrennte und nahezu sphĂ€rische Nanopartikel in der Al2O3-Matrix bildet, und das ganze System eine exzellente Multilagenstruktur aufweist. Die magnetischen Eigenschaften wurden mittels DC-Magnetisierung, AC-SuszeptibilitĂ€t, DCRelaxation, magneto-optischem Kerr-Effekt (MOKE) und ferromagnetischer Resonanz untersucht. Im DMIM-System mit der niedrigsten nominelle Dicke, tn = 0.5 nm, und somit kleinster Inter-Partikel-Wechselwirkung wurde individuelles Blocking (SPM-Verhalten) gefunden. Bei einem grĂ¶ĂŸeren Wert von tn = 0.7 nm, und somit stĂ€rkeren Wechselwirkungen, zeigt das System spinglas-artiges kooperatives Einfrieren der magnetischen Partikelmomente bei niedrigen Temperaturen. Diese 'Superspinglas'- Eigenschaften wurden nachgewiesen durch statische und dynamische Untersuchungen, wie z.B. den Memory- und Rejuvenation-Effekt. Bei weiterer VergrĂ¶ĂŸerung der nominellen Dicke und somit stĂ€rkeren Wechselwirkungen zeigt das Ensemble einen superferromagnetischen (SFM) Zustand. Dieser SFM-DomĂ€nen-Zustand wurde nachgewiesen durch eine Cole-Cole-Plot-Analyze der AC-SuszeptibilitĂ€t und durch polarisierte Neutronenreflektometrie (PNR). Es ist sogar gelungen diese SFM-DomĂ€nen direkt durch Photoelektronen-Emissionsmikroskopie (PEEM) an einem Synchrotron und MOKE-Mikroskopie darzustellen. Sichtbar sind StreifendomĂ€nen entlang der leichten planaren Achse, jedoch mit unregelmĂ€ĂŸigen WĂ€nden und loch-artigen Strukturen ("DomĂ€nen in DomĂ€nen") Wie erwartet wachsen bzw. schrumpfen die DomĂ€nen vorzugsweise durch seitliche Bewegung der langen WĂ€nde in einem longitudinalen Feld. Der SFM-DomĂ€nenzustand kann erklĂ€rt werden durch Dipol- und Tunnelaustausch-Wechselwirkung der Partikel sowie Wechselwirkungen ĂŒber atomare magnetische Cluster. Diese extrem kleinen Cluster wurden durch deren paramagnetischen Beitrag zunĂ€chst in Systemen mit tn = 0.5 nm und 0.7 nm nachgewiesen, dann aber auch in SFM-Systemen mit tn = 1.3 nm. In beiden FĂ€llen sind sie nicht durch TEM nachweisbar. Bei tn = 1.4 nm findet strukturelle Perkolation der Partikel statt und es wird eine gewöhnliche drei-dimensionale (3D) ferromagnetische Phase mit Ohm'schen Widerstand gefunden. PNR und Magnetisierungs-Messungen an der DMIM-Probe mit tn = 1.6 nm zeigen dominante dipolare Kopplung der ferromagnetischen Lagen. So zeigen die PNR Daten nahe der KoerzitivfeldstĂ€rke einen neuartigen und unerwarteten Zustand, bei dem ein moduliertes Magnetisierungs-Profil im Multilagenstapel vorzufinden ist. Mit Hilfe von mikromagnetischen Simulationen konnten wir zeigen, dass eine Konkurrenz zwischen langreichweitiger und kurzreichweitiger (NĂ©el-) Dipol-Kopplung fĂŒr diesen Zustand verantwortlich ist. Im zweiten Teil meiner Arbeit wurden die strukturellen und magnetischen Eigenschaften von FeCo-Nanopartikel in flĂŒssigem Hexan mit zwei unterschiedlichen Konzentrationen untersucht. Eine Inter-Partikel SFM-Ordnung wurde mittels Magnetisierungs- und AC-SuszeptibilitĂ€ts-Messungen nachgewiesen. Mössbauer- Spektroskopieuntersuchungen zeigen ebenso kollektive Inter-Partikel-Korrelationen

    Efficient Control of Magnetization Dynamics Via W/CuOx_\text{x} Interface

    Full text link
    Magnetization dynamics, which determine the speed of magnetization switching and spin information propagation, play a central role in modern spintronics. Gaining its control will satisfy the different needs of various spintronic devices. In this work, we demonstrate that the surface oxidized Cu (CuOx_\text{x}) can be employed for the tunability of magnetization dynamics of ferromagnet (FM)/heavy metal (HM) bilayer system. The capping CuOx_\text{x} layer in CoFeB/W/CuOx_\text{x} trilayer reduces the magnetic damping value in comparison with the CoFeB/W bilayer. The magnetic damping even becomes lower than that of the CoFeB/CuOx_\text{x} by ~ 16% inferring the stabilization of anti-damping phenomena. Further, the reduction in damping is accompanied by a very small reduction in the spin pumping-induced output DC voltage in the CoFeB/W/CuOx_\text{x} trilayer. The simultaneous observation of anti-damping and spin-to-charge conversion can be attributed to the orbital Rashba effect observed at the HM/CuOx_\text{x} interface. Our experimental findings illustrate that the cost-effective CuOx_\text{x} can be employed as an integral part of modern spintronics devices owing to its rich underneath spin-orbital physics

    Structural deformation and irreversible magnetic properties of flexible Co/Pt and Co/Pd thin films

    Full text link
    The successful commercialization of flexible spintronic devices requires a complete understanding of the impact of external strain on the structural, electronic, and magnetic properties of a system. The impact of bending-induced strain on flexible films is studied quite well. However, little is known about the effect of other modes of flexibility, e.g., wrinkling, twisting, peeling, and stretching on the functional properties of flexible films. In this context, perpendicular magnetic anisotropic Co/Pt and Co/Pd thin films are prepared on flexible Kapton substrates, and the impact of the peeling mode is studied in detail. The peeling method generates numerous cracks, and buckling in the thin film, along with localized blister formation imaged by scanning electron microscopy. Further, the resistivity measurement confirms a significant enhancement in sample resistance owing to the severe damage of the films. The structural discontinuities strongly affect the magnetization reversal phenomena as measured by the magneto-optic Kerr effect (MOKE)-based microscopy. The bubble domains got converted to elongated-shaped domains due to several hindrances to the wall motion after strain application. Further, the relaxation measurements reveal that the thermal energy is insufficient to switch the magnetization at a few areas due to their high pinning potential associated with the damages. In contrast to bending-induced strain, here, all the modifications in the functional properties are found to be irreversible in nature

    Molecular Hybridization Induced Antidamping and Sizable Enhanced Spin-to-Charge Conversion in Co20Fe60B20/ÎČ\beta-W/C60 Heterostructures

    Full text link
    Development of power efficient spintronics devices has been the compelling need in the post-CMOS technology era. The effective tunability of spin-orbit-coupling (SOC) in bulk and at the interfaces of hybrid materials stacking is a prerequisite for scaling down the dimension and power consumption of these devices. In this work, we demonstrate the strong chemisorption of C60 molecules when grown on the high SOC ÎČ\beta-W layer. The parent CFB/ÎČ\beta-W bilayer exhibits large spin-to-charge interconversion efficiency, which can be ascribed to the interfacial SOC observed at the Ferromagnet/Heavy metal interface. Further, the adsorption of C60 molecules on ÎČ\beta-W reduces the effective Gilbert damping by ∌\sim15% in the CFB/ÎČ\beta-W/C60 heterostructures. The anti-damping is accompanied by a gigantic ∌\sim115% enhancement in the spin-pumping induced output voltage owing to the molecular hybridization. The non-collinear Density Functional Theory calculations confirm the long-range enhancement of SOC of ÎČ\beta-W upon the chemisorption of C60 molecules, which in turn can also enhance the SOC at the CFB/ÎČ\beta-W interface in CFB/ÎČ\beta-W/C60 heterostructures. The combined amplification of bulk as well interfacial SOC upon molecular hybridization stabilizes the anti-damping and enhanced spin-to-charge conversion, which can pave the way for the fabrication of power efficient spintronics devices
    corecore