24 research outputs found

    A complementary relation between classical bits and randomness in local part in simulating singlet state

    Full text link
    Recently Leggett's proposal of non-local model generates new interest in simulating the statistics of singlet state. Singlet state statistics can be simulated by 1 bit of classical communication without using any further nonlocal correlation. But, interestingly, singlet state statistics can also be simulated with no classical cost if a non-local box is used. In the first case, the output is completely unbiased whereas in second case outputs are completely random. We suggest a new (possibly) signaling correlation resource which successfully simulates singlet statistics and this result suggests a new complementary relation between required classical bits and randomness in local output when the classical communication is limited by 1 cbit. This result reproduces the above two models of simulation as extreme cases. This also explains why Leggett's non-local model and the model presented by Branciard et.al. should fail to reproduce the statistics of a singlet.Comment: v3: Typos corrected, few changed notations, some extensions to earlier write-u

    Local simulation of singlet statistics for restricted set of measurement

    Full text link
    The essence of Bell's theorem is that, in general, quantum statistics cannot be reproduced by local hidden variable (LHV) model. This impossibility is strongly manifested while analyzing the singlet state statistics for Bell-CHSH violations. In this work, we provide various subsets of two outcome POVMs for which a local hidden variable model can be constructed for singlet state.Comment: 2 column, 5 pages, 4 figures, new references, abstract modified, accepted in JP

    Optimal free-will on one side in reproducing the singlet correlation

    Full text link
    Bell's theorem teaches us that there are quantum correlations that can not be simulated by just shared randomness (Local Hidden variable). There are some recent results which simulate singlet correlation by using either 1 cbit or a binary (no-signaling) correlation which violate Bell's inequality maximally. But there is one more possible way to simulate quantum correlation by relaxing the condition of independency of measurement on shared randomness. Recently, MJW Hall showed that the statistics of singlet state can be generated by sacrificing measurement independence where underlying distribution of hidden variables depend on measurement direction of both parties [Phys. Rev. Lett.105 250404 (2010)]. He also proved that for any model of singlet correlation, 86% measurement independence is optimal. In this paper, we show that 59% measurement independence is optimal for simulating singlet correlation when the underlying distribution of hidden variables depend only on measurements of one party. We also show that a distribution corresponding to this optimal lack of free will, already exists in literature which first appeared in the context of detection efficiency loophole.Comment: 7 pages (single column), accepted in J. Phys. A: Math. Theo

    Functional alteration of a dimeric insecticidal lectin to a monomeric antifungal protein correlated to its oligomeric status.

    Get PDF
    BackgroundAllium sativum leaf agglutinin (ASAL) is a 25-kDa homodimeric, insecticidal, mannose binding lectin whose subunits are assembled by the C-terminal exchange process. An attempt was made to convert dimeric ASAL into a monomeric form to correlate the relevance of quaternary association of subunits and their functional specificity. Using SWISS-MODEL program a stable monomer was designed by altering five amino acid residues near the C-terminus of ASAL.Methodology/principal findingsBy introduction of 5 site-specific mutations (-DNSNN-), a Ξ² turn was incorporated between the 11(th) and 12(th) Ξ² strands of subunits of ASAL, resulting in a stable monomeric mutant ASAL (mASAL). mASAL was cloned and subsequently purified from a pMAL-c2X system. CD spectroscopic analysis confirmed the conservation of secondary structure in mASAL. Mannose binding assay confirmed that molecular mannose binds efficiently to both mASAL and ASAL. In contrast to ASAL, the hemagglutination activity of purified mASAL against rabbit erythrocytes was lost. An artificial diet bioassay of Lipaphis erysimi with mASAL displayed an insignificant level of insecticidal activity compared to ASAL. Fascinatingly, mASAL exhibited strong antifungal activity against the pathogenic fungi Fusarium oxysporum, Rhizoctonia solani and Alternaria brassicicola in a disc diffusion assay. A propidium iodide uptake assay suggested that the inhibitory activity of mASAL might be associated with the alteration of the membrane permeability of the fungus. Furthermore, a ligand blot assay of the membrane subproteome of R. solani with mASAL detected a glycoprotein receptor having interaction with mASAL.Conclusions/significanceConversion of ASAL into a stable monomer resulted in antifungal activity. From an evolutionary aspect, these data implied that variable quaternary organization of lectins might be the outcome of defense-related adaptations to diverse situations in plants. Incorporation of mASAL into agronomically-important crops could be an alternative method to protect them from dramatic yield losses from pathogenic fungi in an effective manner
    corecore