11 research outputs found

    ヘブシナプスの明示的重み制約を除くためのスパイクタイミング依存可塑性に基づく確率的競合ヘブ学習メカニズムに関する研究

    Get PDF
    国立大学法人長岡技術科学大

    End-To-End Data-Dependent Routing in Multi-Path Neural Networks

    Full text link
    Neural networks are known to give better performance with increased depth due to their ability to learn more abstract features. Although the deepening of networks has been well established, there is still room for efficient feature extraction within a layer which would reduce the need for mere parameter increment. The conventional widening of networks by having more filters in each layer introduces a quadratic increment of parameters. Having multiple parallel convolutional/dense operations in each layer solves this problem, but without any context-dependent allocation of resources among these operations: the parallel computations tend to learn similar features making the widening process less effective. Therefore, we propose the use of multi-path neural networks with data-dependent resource allocation among parallel computations within layers, which also lets an input to be routed end-to-end through these parallel paths. To do this, we first introduce a cross-prediction based algorithm between parallel tensors of subsequent layers. Second, we further reduce the routing overhead by introducing feature-dependent cross-connections between parallel tensors of successive layers. Our multi-path networks show superior performance to existing widening and adaptive feature extraction, and even ensembles, and deeper networks at similar complexity in the image recognition task

    Neural Mixture Models with Expectation-Maximization for End-to-end Deep Clustering

    Full text link
    Any clustering algorithm must synchronously learn to model the clusters and allocate data to those clusters in the absence of labels. Mixture model-based methods model clusters with pre-defined statistical distributions and allocate data to those clusters based on the cluster likelihoods. They iteratively refine those distribution parameters and member assignments following the Expectation-Maximization (EM) algorithm. However, the cluster representability of such hand-designed distributions that employ a limited amount of parameters is not adequate for most real-world clustering tasks. In this paper, we realize mixture model-based clustering with a neural network where the final layer neurons, with the aid of an additional transformation, approximate cluster distribution outputs. The network parameters pose as the parameters of those distributions. The result is an elegant, much-generalized representation of clusters than a restricted mixture of hand-designed distributions. We train the network end-to-end via batch-wise EM iterations where the forward pass acts as the E-step and the backward pass acts as the M-step. In image clustering, the mixture-based EM objective can be used as the clustering objective along with existing representation learning methods. In particular, we show that when mixture-EM optimization is fused with consistency optimization, it improves the sole consistency optimization performance in clustering. Our trained networks outperform single-stage deep clustering methods that still depend on k-means, with unsupervised classification accuracy of 63.8% in STL10, 58% in CIFAR10, 25.9% in CIFAR100, and 98.9% in MNIST

    Spike-Timing-Dependent Plasticity and Short-Term Plasticity Jointly Control the Excitation of Hebbian Plasticity without Weight Constraints in Neural Networks

    No full text
    Hebbian plasticity precisely describes how synapses increase their synaptic strengths according to the correlated activities between two neurons; however, it fails to explain how these activities dilute the strength of the same synapses. Recent literature has proposed spike-timing-dependent plasticity and short-term plasticity on multiple dynamic stochastic synapses that can control synaptic excitation and remove many user-defined constraints. Under this hypothesis, a network model was implemented giving more computational power to receptors, and the behavior at a synapse was defined by the collective dynamic activities of stochastic receptors. An experiment was conducted to analyze can spike-timing-dependent plasticity interplay with short-term plasticity to balance the excitation of the Hebbian neurons without weight constraints? If so what underline mechanisms help neurons to maintain such excitation in computational environment? According to our results both plasticity mechanisms work together to balance the excitation of the neural network as our neurons stabilized its weights for Poisson inputs with mean firing rates from 10 Hz to 40 Hz. The behavior generated by the two neurons was similar to the behavior discussed under synaptic redistribution, so that synaptic weights were stabilized while there was a continuous increase of presynaptic probability of release and higher turnover rate of postsynaptic receptors

    Transformers in Single Object Tracking: An Experimental Survey

    No full text
    Single-object tracking is a well-known and challenging research topic in computer vision. Over the last two decades, numerous researchers have proposed various algorithms to solve this problem and achieved promising results. Recently, Transformer-based tracking approaches have ushered in a new era in single-object tracking by introducing new perspectives and achieving superior tracking robustness. In this paper, we conduct an in-depth literature analysis of Transformer tracking approaches by categorizing them into CNN-Transformer based trackers, Two-stream Two-stage fully-Transformer based trackers, and One-stream One-stage fully-Transformer based trackers. In addition, we conduct experimental evaluations to assess their tracking robustness and computational efficiency using publicly available benchmark datasets. Furthermore, we measure their performances on different tracking scenarios to identify their strengths and weaknesses in particular situations. Our survey provides insights into the underlying principles of Transformer tracking approaches, the challenges they encounter, and the future directions they may take

    Transformers in Single Object Tracking: An Experimental Survey

    Full text link
    Single-object tracking is a well-known and challenging research topic in computer vision. Over the last two decades, numerous researchers have proposed various algorithms to solve this problem and achieved promising results. Recently, Transformer-based tracking approaches have ushered in a new era in single-object tracking by introducing new perspectives and achieving superior tracking robustness. In this paper, we conduct an in-depth literature analysis of Transformer tracking approaches by categorizing them into CNN-Transformer based trackers, Two-stream Two-stage fully-Transformer based trackers, and One-stream One-stage fully-Transformer based trackers. In addition, we conduct experimental evaluations to assess their tracking robustness and computational efficiency using publicly available benchmark datasets. Furthermore, we measure their performances on different tracking scenarios to identify their strengths and weaknesses in particular situations. Our survey provides insights into the underlying principles of Transformer tracking approaches, the challenges they encounter, and the future directions they may take.Comment: 36 pages, 22 figures, review paper, submitted to IEEE Access, updated with CVPR-2023 paper
    corecore