18 research outputs found

    Analyzing Social Influence through Social Media: A Structured Literature Review

    No full text
    The emergence of social media enables billions of people to share their content and in doing so they influence others and are being influenced themselves. This virtual environment provides a new perspective for the current social influence theories. In this study, the state-of-the-art literature on social influence through social media is reviewed. We find that social influence metrics, influence maximization, mobilization, Word-Of-Mouth and Online Reputation Management are important trends in this field of research. Social influence is shown to have a big impact in social media, but the best way to measure, maximize and coordinate this influence is still to be found. Building on the analyzed literature, we present the Online Social Influence Model, which shows the steps that are necessary to manage social influence through social media. The current study can be valuable to both researchers and practitioners, by providing a starting point for further research and identifying opportunities to improve marketing practices

    Geometric Frustration and Long-Range Ordering Induced by Surface Pressure Oscillation in a Langmuir–Blodgett Monolayer of Magnetic Soft Spheres

    No full text
    As a step toward the bottom-up construction of magnonic systems, this paper demonstrates the use of a large-amplitude surface-pressure annealing technique to generate 2-D order in a Langmuir–Blodgett monolayer of magnetic soft spheres comprising a surfactant-encapsulated polyoxometalate. The films show a distorted square lattice interpreted as due to geometric frustration caused by 2-D confinement between soft walls, one being the air interface and the other the aqueous subphase. Hysteresis and relaxation phenomena in the 2-D layers are suggested to be due to folding and time-dependent interpenetration of surfactant chains

    Polymer Micelle Directed Magnetic Cargo Assemblies Towards Spin‐wave Manipulation

    No full text
    Spin-wave based technologies that use collective oscillation of electrons termed magnons have been proposed for future computing landscapes due to their low energy consumption and high data transfer speeds. Magnonic crystals, materials with magnetic properties periodically varied in space, are central to such technologies. However, they are currently limited by the lithography techniques used for the magnetic patterning. To address this issue, bottom-up self-assembly using polymer templates to order magnetic cargo is presented. In this work, block copolymer micelles are used as templates to direct the organization of polyoxometalate (POM) molecules into organized assemblies. The structural organization of these assemblies is evaluated using microscopy and scattering techniques. The organized POM assemblies are demonstrated to modulate spin-waves excited in permalloy thin films. This work demonstrates the first use of a bottom-up approach to realize the fabrication of a magnonic assembly at the nanoscale. It further paves the way to achieve magnon-mediated self-assembled computing architectures

    Cellular interactions with polystyrene nanoplastics—The role of particle size and protein corona

    No full text
    Plastic waste is ubiquitously spread across the world and its smaller analogs—microplastics and nanoplastics—raise particular health concerns. While biological impacts of microplastics and nanoplastics have been actively studied, the chemical and biological bases for the adverse effects are sought after. This work explores contributory factors by combining results from in vitro and model mammalian membrane experimentation to assess the outcome of cell/nanoplastic interactions in molecular detail, inspecting the individual contribution of nanoplastics and different types of protein coronae. The in vitro study showed mild cytotoxicity and cellular uptake of polystyrene (PS) nanoplastics, with no clear trend based on nanoplastic size (20 and 200 nm) or surface charge. In contrast, a nanoplastic size-dependency on bilayer disruption was observed in the model system. This suggests that membrane disruption resulting from direct interaction with PS nanoplastics has little correlation with cytotoxicity. Furthermore, the level of bilayer disruption was found to be limited to the hydrophilic headgroup, indicating that transmembrane diffusion was an unlikely pathway for cellular uptake—endocytosis is the viable mechanism. In rare cases, small PS nanoplastics (20 nm) were found in the vicinity of chromosomes without a nuclear membrane surrounding them; however, this was not observed for larger PS nanoplastics (200 nm). We hypothesize that the nanoplastics can interact with chromosomes prior to nuclear membrane formation. Overall, precoating PS particles with protein coronae reduced the cytotoxicity, irrespective of the corona type. When comparing the two types, the extent of reduction was more apparent with soft than hard corona

    Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy

    No full text
    It is well known that scanning probe techniques such as scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) routinely offer atomic scale information on the geometric and the electronic structure of solids. Recent developments in STM and especially in non-contact AFM have allowed imaging and spectroscopy of individual molecules on surfaces with unprecedented spatial resolution, which makes it possible to study chemistry and physics at the single molecule level. In this feature article, we first review the physical concepts underlying image contrast in STM and AFM. We then focus on the key experimental considerations and use selected examples to demonstrate the capabilities of modern day low-temperature scanning probe microscopy in providing chemical insight at the single molecule level

    Electronic Quantum Materials Simulated with Artificial Model Lattices

    No full text
    The band structure and electronic properties of a material are defined by the sort of elements, the atomic registry in the crystal, the dimensions, the presence of spin-orbit coupling, and the electronic interactions. In natural crystals, the interplay of these factors is difficult to unravel, since it is usually not possible to vary one of these factors in an independent way, keeping the others constant. In other words, a complete understanding of complex electronic materials remains challenging to date. The geometry of two- and one-dimensional crystals can be mimicked in artificial lattices. Moreover, geometries that do not exist in nature can be created for the sake of further insight. Such engineered artificial lattices can be better controlled and fine-tuned than natural crystals. This makes it easier to vary the lattice geometry, dimensions, spin-orbit coupling, and interactions independently from each other. Thus, engineering and characterization of artificial lattices can provide unique insights. In this Review, we focus on artificial lattices that are built atom-by-atom on atomically flat metals, using atomic manipulation in a scanning tunneling microscope. Cryogenic scanning tunneling microscopy allows for consecutive creation, microscopic characterization, and band-structure analysis by tunneling spectroscopy, amounting in the analogue quantum simulation of a given lattice type. We first review the physical elements of this method. We then discuss the creation and characterization of artificial atoms and molecules. For the lattices, we review works on honeycomb and Lieb lattices and lattices that result in crystalline topological insulators, such as the Kekulé and "breathing"kagome lattice. Geometric but nonperiodic structures such as electronic quasi-crystals and fractals are discussed as well. Finally, we consider the option to transfer the knowledge gained back to real materials, engineered by geometric patterning of semiconductor quantum wells

    Compact localized boundary states in a quasi-1D electronic diamond-necklace chain

    No full text
    Zero-energy modes localized at the ends of one-dimensional (1D) wires hold great potential as qubits for fault-tolerant quantum computing. However, all the candidates known to date exhibit a wave function that decays exponentially into the bulk and hybridizes with other nearby zero-modes, thus hampering their use for braiding operations. Here, we show that a quasi-1D diamond-necklace chain exhibits a completely unforeseen type of robust boundary state, namely compact localized zero-energy modes that do not decay into the bulk. We theoretically engineer a lattice geometry to access this mode, and experimentally realize it in an electronic quantum simulator setup. Our work provides a general route for the realization of robust and compact localized zero-energy modes that could potentially be braided without the drawbacks of hybridization

    Charge transport in topological graphene nanoribbons and nanoribbon heterostructures

    No full text
    Although it is generally accepted that structural parameters like width, shape, and edge structure crucially affect the electronic characteristics of graphene nanoribbons (GNRs), the exact relationship between geometry and charge transport remains largely unexplored. In this paper, we present in situ through-transport measurements of various topological GNRs and GNR heterostructures by lifting the ribbon with the tip of a scanning tunneling microscope. At the same time, we develop a comprehensive transport model that enables us to understand various features, such as obscuring of localized states in through transport, the effect of topology on transport, as well as negative differential conductance in heterostructures with localized electronic modes. The combined experimental and theoretical efforts described in this paper serve to elucidate general charge transport phenomena in GNRs and GNR heterostructures

    Single-source precursor synthesis of colloidal CaS and SrS nanocrystals

    No full text
    Colloidal CaS and SrS nanocrystals were prepared by thermal decomposition of calcium- and strontiumdiisopropyldithiocarbamate complexes in oleylamine. The diameter of the nanocrystals was 8-10 nm with a narrow size distribution, showing that this single source precursor method gives access to monodisperse nanocrystals of small size. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved
    corecore