74 research outputs found

    Current Status of the Insecticide Resistance in Aedes aegypti (Diptera: Culicidae) from Mexico

    Get PDF
    The mosquito Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue in Mexico and lately virus Chikungunya, although Aedes albopictus is widely distributed; its role in both diseases’ transmission has not been confirmed. The control of mosquitoes in Mexico includes source reduction consisting in the elimination of containers that are favorable sites for oviposition and development of the aquatic stage. The use of insecticides is to control larvae and adulticides as outdoor ultra-low volume applications and indoor residual spray and more recently impregnated materials. The health department regulates the use of insecticides, and such regulations are revised and adapted over time. Since 1999, the vector control regulations gave preference to the use of pyrethroids, a permethrin-based formulation to control adult forms. This insecticide was used as the only adulticide in Mexico for more than 10 years. The consequences of this actions have evolved in a widespread and strong resistance to other insecticides, mainly pyrethroids. We include in this revision evidence of resistance reported in Ae. aegypti in Mexico

    Cervical cancer cell lines expressing NKG2D-ligands are able to down-modulate the NKG2D receptor on NKL cells with functional implications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer represents the third most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths in women worldwide. Natural killer (NK) cells play an important role in the defense against viruses, intracellular bacteria and tumors. NKG2D, an activating receptor on NK cells, recognizes MHC class I chain-related molecules, such as MICA/B and members of the ULBP/RAET1 family. Tumor-derived soluble NKG2D-ligands have been shown to down-modulate the expression of NKG2D on NK cells. In addition to the down-modulation induced by soluble NKG2D-ligands, it has recently been described that persistent cell-cell contact can also down-modulate NKG2D expression. The goal of this study was to determine whether the NKG2D receptor is down-modulated by cell-cell contact with cervical cancer cells and whether this down-modulation might be associated with changes in NK cell activity.</p> <p>Results</p> <p>We demonstrate that NKG2D expressed on NKL cells is down-modulated by direct cell contact with cervical cancer cell lines HeLa, SiHa, and C33A, but not with non-tumorigenic keratinocytes (HaCaT). Moreover, this down-modulation had functional implications. We found expression of NKG2D-ligands in all cervical cancer cell lines, but the patterns of ligand distribution were different in each cell line. Cervical cancer cell lines co-cultured with NKL cells or fresh NK cells induced a marked diminution of NKG2D expression on NKL cells. Additionally, the cytotoxic activity of NKL cells against K562 targets was compromised after co-culture with HeLa and SiHa cells, while co-culture with C33A increased the cytotoxic activity of the NKL cells.</p> <p>Conclusions</p> <p>Our results suggest that differential expression of NKG2D-ligands in cervical cancer cell lines might be associated with the down-modulation of NKG2D, as well as with changes in the cytotoxic activity of NKL cells after cell-cell contact with the tumor cells.</p

    QTL mapping of genome regions controlling temephos resistance in larvae of the mosquito aedes aegypti

    Get PDF
    Introduction: The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings: Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad6Iquitos (SLD6Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance: Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome

    New record of Aedes Albopictus in a suburban area of Merida, Yucatan, Mexico

    Get PDF
    Along with Aedes aegypti (L.), Aedes albopictus has been implicated as a secondary vector for dengue virus, chikungunya virus, and Zika virus in Latin America. The article covers an entomological survey in 2018, in a suburban area of Merida (the largest and capital city in Yucatan). This is the first report of Ae. albopictus in a suburban area of Merida City. A total of 259 specimens were collected. It is important to consider the ecology of Ae. albopictus alongside that of Ae. aegypti when developing vector/disease control programs

    MHC class I-related chain A and B ligands are differentially expressed in human cervical cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural killer (NK) cells are an important resource of the innate immune system directly involved in the spontaneous recognition and lysis of virus-infected and tumor cells. An exquisite balance of inhibitory and activating receptors tightly controls the NK cell activity. At present, one of the best-characterized activating receptors is NKG2D, which promotes the NK-mediated lysis of target cells by binding to a family of cell surface ligands encoded by the MHC class I chain-related (MIC) genes, among others. The goal of this study was to describe the expression pattern of MICA and MICB at the molecular and cellular levels in human cervical cancer cell lines infected or not with human papillomavirus, as well as in a non-tumorigenic keratinocyte cell line.</p> <p>Results</p> <p>Here we show that MICA and MICB exhibit differential expression patterns among HPV-infected (SiHa and HeLa) and non-infected cell lines (C33-A, a tumor cell line, and HaCaT, an immortalized keratinocyte cell line). Cell surface expression of MICA was higher than cell surface expression of MICB in the HPV-positive cell lines; in contrast, HPV-negative cells expressed lower levels of MICA. Interestingly, the MICA levels observed in C33-A cells were overcome by significantly higher MICB expression. Also, all cell lines released higher amounts of soluble MICB than of soluble MICA into the cell culture supernatant, although this was most pronounced in C33-A cells. Additionally, Real-Time PCR analysis demonstrated that MICA was strongly upregulated after genotoxic stress.</p> <p>Conclusions</p> <p>This study provides evidence that even when MICA and MICB share a high degree of homology at both genomic and protein levels, differential regulation of their expression and cell surface appearance might be occurring in cervical cancer-derived cells.</p

    Insecticide-Treated House Screens to Reduce Infestations of Dengue Vectors

    Get PDF
    The public health importance of the endophilic mosquito Aedes aegypti increased dramatically in the recent decade, because it is the vector of dengue, chikungunya, Zika and yellow fever. The use of long-lasting insecticidal nets (LLINs) fixed on doors and windows, as insecticide-treated screening (ITS), is one innovative approach recently evaluated for Aedes control in South Mexico. From 2009 to 2014, cluster-randomised controlled trials were conducted in Acapulco and Merida. Intervention clusters received Aedes-proof houses (‘Casas a prueba de Aedes’) with ITS and were followed up during 2 years. Overall, results showed significant and sustained reductions on indoor adult vector densities in the treated clusters with ITS after 2 years: ca. 50% on the presence (OR ≤ 0.62, P < 0.05) and abundance (IRR ≤ 0.58, P < 0.05). ITS on doors and windows are ‘user-friendly’ tool, with high levels of acceptance, requiring little additional work or behavioural change by householders. Factors that favoured these interventions were (a) house construction, (b) high coverage achieved due to the excellent acceptance by the community and (c) collaboration of the vector control services; and only some operational complaints relating to screen fragility and the installation process. ITS is a housing improvement that should be part of the current paradigms for urban vector-borne disease control

    Planeación, gobernanza y sustentabilidad Retos y desafíos desde el enfoque territorial

    Get PDF
    Frente a la compleja realidad actual, resulta ineludible el desarrollo de la investigación científica de los fenómenos y procesos urbanos, territoriales y ambientales, que contribuya a su comprensión y la construcción de alternativas de solución a los retos y desafíos vigentes. En este contexto, el abordaje de las ciudades y regiones metropolitanas, el ordenamiento del territorio y la ocupación del espacio, así como la relación sociedad-naturaleza y la complejidad ambiental, precisa la generación de metodologías y procesos de investigación multi e inter disciplinarios que contribuyan a la comprensión de los procesos socioterritoriales, el mejoramiento de las condiciones de vida y la conservación ambiental.Programa de Fortalecimiento de la Calidad Educativa PFCE-2016 proyecto K0313101

    Apoptosis induction in Jurkat cells and sCD95 levels in women's sera are related with the risk of developing cervical cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, there is clear evidence that apoptosis plays an important role in the development and progression of tumors. One of the best characterized apoptosis triggering systems is the CD95/Fas/APO-1 pathway; previous reports have demonstrated high levels of soluble CD95 (sCD95) in serum of patients with some types of cancer. Cervical cancer is the second most common cancer among women worldwide. As a first step in an attempt to design a minimally invasive test to predict the risk of developing cervical cancer in patients with precancerous lesions, we used a simple assay based on the capacity of human serum to induce apoptosis in Jurkat cells. We evaluated the relationship between sCD95 levels and the ability to induce apoptosis in Jurkat cells in cervical cancer patients and controls.</p> <p>Methods</p> <p>Jurkat cells were exposed to serum from 63 women (20 healthy volunteers, 21 with cervical intraepithelial neoplasia grade I [CIN 1] and 22 with cervical-uterine carcinoma). The apoptotic rate was measured by flow cytometry using Annexin-V-Fluos and Propidium Iodide as markers. Serum levels of sCD95 and soluble CD95 ligand (sCD95L) were measured by ELISA kits.</p> <p>Results</p> <p>We found that serum from almost all healthy women induced apoptosis in Jurkat cells, while only fifty percent of the sera from women with CIN 1 induced cell death in Jurkat cells. Interestingly, only one serum sample from a patient with cervical-uterine cancer was able to induce apoptosis, the rest of the sera protected Jurkat cells from this killing. We were able to demonstrate that elimination of Jurkat cells was mediated by the CD95/Fas/Apo-1 apoptotic pathway. Furthermore, the serum levels of sCD95 measured by ELISA were significantly higher in women with cervical cancer.</p> <p>Conclusion</p> <p>Our results demonstrate that there is a strong correlation between low levels of sCD95 in serum of normal women and higher apoptosis induction in Jurkat cells. We suggest that an analysis of the apoptotic rate induced by serum in Jurkat cells and the levels of sCD95 in serum could be helpful during the prognosis and treatment of women detected with precancerous lesions or cervical cancer.</p

    Peripheral T-lymphocytes express WNT7A and its restoration in leukemia-derived lymphoblasts inhibits cell proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WNT7a, a member of the Wnt ligand family implicated in several developmental processes, has also been reported to be dysregulated in some types of tumors; however, its function and implication in oncogenesis is poorly understood. Moreover, the expression of this gene and the role that it plays in the biology of blood cells remains unclear. In addition to determining the expression of the <it>WNT7A </it>gene in blood cells, in leukemia-derived cell lines, and in samples of patients with leukemia, the aim of this study was to seek the effect of this gene in proliferation.</p> <p>Methods</p> <p>We analyzed peripheral blood mononuclear cells, sorted CD3 and CD19 cells, four leukemia-derived cell lines, and blood samples from 14 patients with Acute lymphoblastic leukemia (ALL), and 19 clinically healthy subjects. Reverse transcription followed by quantitative Real-time Polymerase chain reaction (qRT-PCR) analysis were performed to determine relative <it>WNT7A </it>expression. Restoration of WNT7a was done employing a lentiviral system and by using a recombinant human protein. Cell proliferation was measured by addition of WST-1 to cell cultures.</p> <p>Results</p> <p>WNT7a is mainly produced by CD3 T-lymphocytes, its expression decreases upon activation, and it is severely reduced in leukemia-derived cell lines, as well as in the blood samples of patients with ALL when compared with healthy controls (<it>p </it>≤0.001). By restoring <it>WNT7A </it>expression in leukemia-derived cells, we were able to demonstrate that WNT7a inhibits cell growth. A similar effect was observed when a recombinant human WNT7a protein was used. Interestingly, restoration of <it>WNT7A </it>expression in Jurkat cells did not activate the canonical Wnt/β-catenin pathway.</p> <p>Conclusions</p> <p>To our knowledge, this is the first report evidencing quantitatively decreased <it>WNT7A </it>levels in leukemia-derived cells and that <it>WNT7A </it>restoration in T-lymphocytes inhibits cell proliferation. In addition, our results also support the possible function of <it>WNT7A </it>as a tumor suppressor gene as well as a therapeutic tool.</p
    corecore