18 research outputs found

    Autophagy:A Versatile Player in the Progression of Colorectal Cancer and Drug Resistance

    Get PDF
    Colorectal cancer (CRC) is among the topmost malignancies for both genders. Despite the high incidence rate and advances in diagnostic tools, treatment in many cases is still ineffective. Most cancerous lesions in CRC begin as benign, followed by the development of invasive forms and metastases. The development of CRC has been linked to defects in autophagy, which plays both a pro-and anti-tumor role and is mainly context-dependent. Autophagy suppression could enhance apoptosis via p53 activation, or autophagy also promotes tumor progression by maintaining tumor growth and increasing resistance to chemotherapy. Autophagy promotes the invasion and metastasis of CRC cells via increased epithelial-mesenchymal transition (EMT). Moreover, dysbiosis of gut microbiota upregulated autophagy and metastasis markers. Autophagy responses may also modulate the tumor microenvironment (TME) via regulating the differentiation process of several innate immune cells. Treatments that promote tumor cell death by stimulating or inhibiting autophagy could be beneficial if used as an adjunct treatment, but the precise role of various autophagy-modulating drugs in CRC patients is needed to be explored. In this article, we present an overview of the autophagy process and its role in the pathogenesis and therapeutic resistance of CRC. Also, we focused on the current understanding of the role of the EMT and TME, including its relation to gut microbiota and immune cells, in autophagic manipulation of CRC. We believe that there is a potential link between autophagy, TME, EMT, and drug resistance, suggesting that further studies are needed to explore this aspect.</p

    Genetic mutations and non‐coding RNA‐based epigenetic alterations mediating the Warburg effect in colorectal carcinogenesis

    Get PDF
    Colorectal cancer (CRC) development is a gradual process defined by the accumulation of numerous genetic mutations and epigenetic alterations leading to the adenoma‐carcinoma sequence. Despite significant advances in the diagnosis and treatment of CRC, it continues to be a leading cause of cancer‐related deaths worldwide. Even in the presence of oxygen, CRC cells bypass oxidative phosphorylation to produce metabolites that enable them to proliferate and survive—a phenomenon known as the “Warburg effect”. Understanding the complex glucose metabolism in CRC cells may support the development of new diagnostic and therapeutic approaches. Here we discuss the most recent findings on genetic mutations and epigenetic modulations that may positively or negatively regulate the Warburg effect in CRC cells. We focus on the non‐coding RNA (ncRNA)‐based epigenetics, and we present a perspective on the therapeutic relevance of critical molecules and ncRNAs mediating the Warburg effect in CRC cells. All the relevant studies were identified and assessed according to the genes and enzymes mediating the Warburg effect. The findings summarized in this review should provide a better understanding of the relevance of genetic mutations and the ncRNA‐based epigenetic alterations to CRC pathogenesis to help overcome chemoresistance.</p

    Genetic mutations and non‐coding RNA‐based epigenetic alterations mediating the Warburg effect in colorectal carcinogenesis

    Get PDF
    Colorectal cancer (CRC) development is a gradual process defined by the accumulation of numerous genetic mutations and epigenetic alterations leading to the adenoma‐carcinoma sequence. Despite significant advances in the diagnosis and treatment of CRC, it continues to be a leading cause of cancer‐related deaths worldwide. Even in the presence of oxygen, CRC cells bypass oxidative phosphorylation to produce metabolites that enable them to proliferate and survive—a phenomenon known as the “Warburg effect”. Understanding the complex glucose metabolism in CRC cells may support the development of new diagnostic and therapeutic approaches. Here we discuss the most recent findings on genetic mutations and epigenetic modulations that may positively or negatively regulate the Warburg effect in CRC cells. We focus on the non‐coding RNA (ncRNA)‐based epigenetics, and we present a perspective on the therapeutic relevance of critical molecules and ncRNAs mediating the Warburg effect in CRC cells. All the relevant studies were identified and assessed according to the genes and enzymes mediating the Warburg effect. The findings summarized in this review should provide a better understanding of the relevance of genetic mutations and the ncRNA‐based epigenetic alterations to CRC pathogenesis to help overcome chemoresistance.</p

    MLH1 mediates cytoprotective nucleophagy to resist 5-Fluorouracil-induced cell death in colorectal carcinoma

    Get PDF
    Colorectal Cancer (CRC) with Microsatellite instability (MSI) and mutLhomolog-1 (MLH1) gene deficiency are less aggressive than MLH1 proficient cancers. MLH1 is involved in several cellular processes, but its connection with the autophagy-dependent cellular response towards anticancer drugs remains unclear. In this study, we aimed to investigate the interaction between MLH1 and the autophagy marker LC3, which facilitated nucleophagy induction, and its potential role in determining sensitivity to 5-Fluorouracil (5-FU) induced cell death. To examine the role of MLH1 in DNA-damage-induced nucleophagy in CRC cells, we utilized a panel of MLH1 deficient and MLH1 proficient CRC cell lines. We included a parental HCT116 cell line (MLH1−/−) and its isogenic cell line HCT116 MLH1+/− in which a single allele of the MLH1 gene was introduced using CRISPR-Cas9 gene editing. We observed that MLH1 proficient cells were less sensitive to the 5-FU-induced cytotoxic effect. The 5-FU induced DNA damage led to LC3 up-regulation, which was dependent on MLH1 overexpression. Moreover, immunofluorescence and immunoprecipitation data showed LC3 and MLH1 were colocalized in CRC cells. Consequently, MLH1 dependent 5-FU-induced DNA damage contributed to the formation of micronuclei. These micronuclei colocalize with autolysosome, indicating a cytoprotective role of MLH1 dependent nucleophagy. Interestingly, siRNA knockdown of MLH1 in HCT116 MLH1+/− prevented LC3 upregulation and micronuclei formation. These novel data are the first to show an essential role of MLH1 in mediating the chemoresistance and survival of cancer cells by increasing the LC3 expression and inducing nucleophagy in 5-FU treated CRC cells.</p

    Protein arginine N-methyltransferase 5 in colorectal carcinoma:Insights into mechanisms of pathogenesis and therapeutic strategies

    Get PDF
    Protein arginine N-methyltransferase 5 (PRMT5) enzyme is one of the eight canonical PRMTs, classified as a type II PRMT, induces arginine monomethylation and symmetric dimethylation. PRMT5 is known to be overexpressed in multiple cancer types, including colorectal cancer (CRC), where its overexpression is associated with poor survival. Recent studies have shown that upregulation of PRMT5 induces tumor growth and metastasis in CRC. Moreover, various novel PRMT5 inhibitors tested on CRC cell lines showed promising anticancer effects. Also, it was suggested that PRMT5 could be a valid biomarker for CRC diagnosis and prognosis. Hence, a deeper understanding of PRMT5-mediated CRC carcinogenesis could provide new avenues towards developing a targeted therapy. In this study, we started with in silico analysis correlating PRMT5 expression in CRC patients as a prelude to further our investigation of its role in CRC. We then carried out a comprehensive review of the scientific literature that dealt with the role(s) of PRMT5 in CRC pathogenesis, diagnosis, and prognosis. Also, we have summarized key findings from in vitro research using various therapeutic agents and strategies directly targeting PRMT5 or disrupting its function. In conclusion, PRMT5 seems to play a significant role in the pathogenesis of CRC; therefore, its prognostic and therapeutic potential merits further investigation.</p

    Evaluation of Antiproliferative Properties of CoMnZn-Fe<sub>2</sub>O<sub>4</sub> Ferrite Nanoparticles in Colorectal Cancer Cells

    Get PDF
    The PEG-coated ferrite nanoparticles Co0.2Mn0.6Zn0.2Fe2O4 (X1), Co0.4Mn0.4Zn0.2Fe2O4 (X2), and Co0.6Mn0.2Zn0.2Fe2O4 (X3) were synthesized by the coprecipitation method. The nanoparticles were characterized by XRD, Raman, VSM, XPS, and TEM. The magnetic hyperthermia efficiency (MH) was determined for PEG-coated nanoparticles using an alternating magnetic field (AMF). X2 nanoparticles displayed the highest saturation magnetization and specific absorption rate (SAR) value of 245.2 W/g for 2 mg/mL in a water medium. Based on these properties, X2 nanoparticles were further evaluated for antiproliferative activity against HCT116 cells at an AMF of 495.25 kHz frequency and 350 G strength, using MTT, colony formation, wound healing assays, and flow cytometry analysis for determining the cell viability, clonogenic property, cell migration ability, and cell death of HCT116 cells upon AMF treatment in HCT116 cells, respectively. We observed a significant inhibition of cell viability (2% for untreated control vs. 50% for AMF), colony-forming ability (530 cells/colony for untreated control vs. 220 cells/colony for AMF), abrogation of cell migration (100% wound closure for untreated control vs. 5% wound closure for AMF), and induction of apoptosis-mediated cell death (7.5% for untreated control vs. 24.7% for AMF) of HCT116 cells with respect to untreated control cells after AMF treatment. Collectively, these results demonstrated that the PEG-coated (CoMnZn-Fe2O4) mixed ferrite nanoparticles upon treatment with AMF induced a significant antiproliferative effect on HCT116 cells compared with the untreated cells, indicating the promising antiproliferative potential of the Co0.4Mn0.4Zn0.2Fe2O4 nanoparticles for targeting colorectal cancer cells. Additionally, these results provide appealing evidence that ferrite-based nanoparticles using MH could act as potential anticancer agents and need further evaluation in preclinical models in future studies against colorectal and other cancers.</p

    Carnosic acid induces apoptosis and inhibits akt/mtor signaling in human gastric cancer cell lines

    Get PDF
    Gastric cancer is among the most common malignancies worldwide. Due to limited availability of therapeutic options, there is a constant need to find new therapies that could target advanced, recurrent, and metastatic gastric cancer. Carnosic acid is a naturally occurring polyphenolic abietane diterpene derived from Rosmarinus officinalis and reported to have numerous pharmacological effects. In this study, the cytotoxicity assay, Annexin V-FITC/PI, caspases 3, 8, and 9, cell cycle analysis, and Western blotting were used to assess the effect of carnosic acid on the growth and survival of human gastric cancer cell lines (AGS and MKN-45). Our findings showed that carnosic acid inhibited human gastric cancer cell proliferation and survival in a dose-dependent manner. Additionally, carnosic acid is found to inhibit the phosphorylation/activation of Akt and mTOR. Moreover, carnosic acid enhanced the cleavage of PARP and downregulated survivin expression, both being known markers of apoptosis. In conclusion, carnosic acid exhibits antitumor activity against human gastric cancer cells via modulating the Akt-mTOR signaling pathway that plays a crucial role in gastric cancer cell proliferation and survival.</p

    Molecular examination of differentially expressed genes in the brains of experimental autoimmune encephalomyelitis mice post herceptin treatment

    Get PDF
    Objective: Herceptin (trastuzumab) is an approved drug for treating HER2+ breast cancer patients, but its use for other diseases is not established. We sought to investigate the effects of Herceptin on ameliorating experimental autoimmune encephalomyelitis (EAE) and to examine its effects on the expression of various genes. Methods: We used in-silico analysis of publicly available data, qRT-PCR, and immunohisto-chemistry (IHC) to determine the expression of HER2+ cells in the brains of EAE mice. IHC was also utilized to determine the anti-inflammatory effects of Herceptin. The ability of Herceptin to alleviate the EAE clinical score was measured in these mice. Bioinformatics analysis of publicly available data and qRT-PCR were performed to investigate the differentially expressed genes that were either up-regulated or down-regulated during the high clinical score (HCS) of the disease. Results: We observed that HER2/Erbb2, the receptor for Herceptin is upregulated in the brains of EAE mice when the brains were examined at the HCS stage. Further, we demonstrated that Herceptin ameliorates the EAE disease, increasing re-myelination, reducing brain inflammation, CD3+ T cell accumulation, and HER2+ cells in the brains of these mice. Molecular analysis demonstrated the expression of different genes that were either up-regulated or down-regulated during the HCS of the disease. Our combined bioinformatics and qRT-PCR analyses show increased mRNA expression of Atp6v0d2, C3, C3ar1, Ccl3, Ccl6, Cd74, Clec7a, Cybb, H2-Aa, Hspb1, Lilr4b, Lilrb4a, Mpeg1, Ms4a4a, Ms4a6c, Saa3, Serpina3n and Timp1, at HCS. Except for the mRNA levels of Cd74 and Clec7a which were increased at HCS when Herceptin was used in both prophylactic and therapeutic regimens, the levels of other described mRNAs were reduced. Conclusion: These novel findings show that Herceptin ameliorates the clinical score in EAE mice and are the first to investigate in detail the differential gene expression post-treatment with the drug.</p

    Molecular examination of differentially expressed genes in the brains of experimental autoimmune encephalomyelitis mice post herceptin treatment

    Get PDF
    Objective: Herceptin (trastuzumab) is an approved drug for treating HER2+ breast cancer patients, but its use for other diseases is not established. We sought to investigate the effects of Herceptin on ameliorating experimental autoimmune encephalomyelitis (EAE) and to examine its effects on the expression of various genes. Methods: We used in-silico analysis of publicly available data, qRT-PCR, and immunohisto-chemistry (IHC) to determine the expression of HER2+ cells in the brains of EAE mice. IHC was also utilized to determine the anti-inflammatory effects of Herceptin. The ability of Herceptin to alleviate the EAE clinical score was measured in these mice. Bioinformatics analysis of publicly available data and qRT-PCR were performed to investigate the differentially expressed genes that were either up-regulated or down-regulated during the high clinical score (HCS) of the disease. Results: We observed that HER2/Erbb2, the receptor for Herceptin is upregulated in the brains of EAE mice when the brains were examined at the HCS stage. Further, we demonstrated that Herceptin ameliorates the EAE disease, increasing re-myelination, reducing brain inflammation, CD3+ T cell accumulation, and HER2+ cells in the brains of these mice. Molecular analysis demonstrated the expression of different genes that were either up-regulated or down-regulated during the HCS of the disease. Our combined bioinformatics and qRT-PCR analyses show increased mRNA expression of Atp6v0d2, C3, C3ar1, Ccl3, Ccl6, Cd74, Clec7a, Cybb, H2-Aa, Hspb1, Lilr4b, Lilrb4a, Mpeg1, Ms4a4a, Ms4a6c, Saa3, Serpina3n and Timp1, at HCS. Except for the mRNA levels of Cd74 and Clec7a which were increased at HCS when Herceptin was used in both prophylactic and therapeutic regimens, the levels of other described mRNAs were reduced. Conclusion: These novel findings show that Herceptin ameliorates the clinical score in EAE mice and are the first to investigate in detail the differential gene expression post-treatment with the drug.</p

    Assessment of <i>Helicobacter pylori </i>cytotoxin-associated Gene A (Cag A) protein and its association with ferritin and vitamin B12 deficiencies among adult healthy asymptomatic residents in Sharjah, United Arab Emirates

    Get PDF
    Introduction: The United Arab Emirates (UAE) serves as an effective epidemiological site for assessing Helicobacter pylori (H. pylori) infection due to its diverse population. However, comprehensive studies on the prevalence of H. pylori in the UAE are notably scarce. In depth prevalence studies are needed as a preventive measure against gastric cancer and other emerging extra gastric diseases associated with H. pylori infection. Aim: This study aimed to assess H. pylori infection and its virulent oncoprotein, the Cytotoxin-Associated Gene (Cag A) and its association with ferritin and vitamin B12 deficiencies. Methods: The study was conducted on 1094 healthy asymptomatic volunteers residents in the Sharjah Emirate, UAE. Enzyme-linked immunosorbent assay (ELISA) was performed to assess H. pylori infection using H. pylori antibodies (IgG), and detection of CagA protein using Cag A antibody (IgG) in the human serum. Ferritin and vitamin B12 serum levels were assessed and correlated to H. pylori infection. Results: This study focuses mainly on the assessment of H. pylori and its virulent factor CagA, in relation to vitamin B12 and ferritin deficiencies. Remarkably, 49.6 % of the participants were detected positive for H. pylori, with over half of these cases involving CagA positive strains. Notably, among Emirati participants, 76.11 % of those with H. pylori infection were CagA positive. Statistical analysis revealed a significant correlation between H. pylori, CagA level, and ferritin/vitamin B12 deficiencies. Conclusion: These findings emphasize the importance of timely detection and eradication of H. pylori not only as a preventive strategy against gastric cancer but also as an effective strategy to rescue the adverse effects from ferritin and vitamin B12 deficiencies, thereby improving the overall health outcomes of individuals affected by H. pylori infection.</p
    corecore