3,362 research outputs found
Investigating Linguistic Pattern Ordering in Hierarchical Natural Language Generation
Natural language generation (NLG) is a critical component in spoken dialogue
system, which can be divided into two phases: (1) sentence planning: deciding
the overall sentence structure, (2) surface realization: determining specific
word forms and flattening the sentence structure into a string. With the rise
of deep learning, most modern NLG models are based on a sequence-to-sequence
(seq2seq) model, which basically contains an encoder-decoder structure; these
NLG models generate sentences from scratch by jointly optimizing sentence
planning and surface realization. However, such simple encoder-decoder
architecture usually fail to generate complex and long sentences, because the
decoder has difficulty learning all grammar and diction knowledge well. This
paper introduces an NLG model with a hierarchical attentional decoder, where
the hierarchy focuses on leveraging linguistic knowledge in a specific order.
The experiments show that the proposed method significantly outperforms the
traditional seq2seq model with a smaller model size, and the design of the
hierarchical attentional decoder can be applied to various NLG systems.
Furthermore, different generation strategies based on linguistic patterns are
investigated and analyzed in order to guide future NLG research work.Comment: accepted by the 7th IEEE Workshop on Spoken Language Technology (SLT
2018). arXiv admin note: text overlap with arXiv:1808.0274
Robust Independent Component Analysis via Minimum Divergence Estimation
Independent component analysis (ICA) has been shown to be useful in many
applications. However, most ICA methods are sensitive to data contamination and
outliers. In this article we introduce a general minimum U-divergence framework
for ICA, which covers some standard ICA methods as special cases. Within the
U-family we further focus on the gamma-divergence due to its desirable property
of super robustness, which gives the proposed method gamma-ICA. Statistical
properties and technical conditions for the consistency of gamma-ICA are
rigorously studied. In the limiting case, it leads to a necessary and
sufficient condition for the consistency of MLE-ICA. This necessary and
sufficient condition is weaker than the condition known in the literature.
Since the parameter of interest in ICA is an orthogonal matrix, a geometrical
algorithm based on gradient flows on special orthogonal group is introduced to
implement gamma-ICA. Furthermore, a data-driven selection for the gamma value,
which is critical to the achievement of gamma-ICA, is developed. The
performance, especially the robustness, of gamma-ICA in comparison with
standard ICA methods is demonstrated through experimental studies using
simulated data and image data.Comment: 7 figure
- …