3,362 research outputs found

    Investigating Linguistic Pattern Ordering in Hierarchical Natural Language Generation

    Full text link
    Natural language generation (NLG) is a critical component in spoken dialogue system, which can be divided into two phases: (1) sentence planning: deciding the overall sentence structure, (2) surface realization: determining specific word forms and flattening the sentence structure into a string. With the rise of deep learning, most modern NLG models are based on a sequence-to-sequence (seq2seq) model, which basically contains an encoder-decoder structure; these NLG models generate sentences from scratch by jointly optimizing sentence planning and surface realization. However, such simple encoder-decoder architecture usually fail to generate complex and long sentences, because the decoder has difficulty learning all grammar and diction knowledge well. This paper introduces an NLG model with a hierarchical attentional decoder, where the hierarchy focuses on leveraging linguistic knowledge in a specific order. The experiments show that the proposed method significantly outperforms the traditional seq2seq model with a smaller model size, and the design of the hierarchical attentional decoder can be applied to various NLG systems. Furthermore, different generation strategies based on linguistic patterns are investigated and analyzed in order to guide future NLG research work.Comment: accepted by the 7th IEEE Workshop on Spoken Language Technology (SLT 2018). arXiv admin note: text overlap with arXiv:1808.0274

    Robust Independent Component Analysis via Minimum Divergence Estimation

    Full text link
    Independent component analysis (ICA) has been shown to be useful in many applications. However, most ICA methods are sensitive to data contamination and outliers. In this article we introduce a general minimum U-divergence framework for ICA, which covers some standard ICA methods as special cases. Within the U-family we further focus on the gamma-divergence due to its desirable property of super robustness, which gives the proposed method gamma-ICA. Statistical properties and technical conditions for the consistency of gamma-ICA are rigorously studied. In the limiting case, it leads to a necessary and sufficient condition for the consistency of MLE-ICA. This necessary and sufficient condition is weaker than the condition known in the literature. Since the parameter of interest in ICA is an orthogonal matrix, a geometrical algorithm based on gradient flows on special orthogonal group is introduced to implement gamma-ICA. Furthermore, a data-driven selection for the gamma value, which is critical to the achievement of gamma-ICA, is developed. The performance, especially the robustness, of gamma-ICA in comparison with standard ICA methods is demonstrated through experimental studies using simulated data and image data.Comment: 7 figure
    • …
    corecore