8 research outputs found

    Differences in perceptual representations in multilinguals’ first, second, and third language

    Get PDF
    Two experiments were conducted to investigate the differences in perceptual representations among multilingual individuals. In Experiment 1, the immediate sentence-picture verification paradigm was used to investigate perceptual representations in the working memory stage. The results suggest a match effect within the first language (Cantonese), but not within the second language (Mandarin) or the third language (English), showing perceptual representations only in first language comprehension. In Experiment 2, the delayed sentence-picture verification paradigm was used to investigate perceptual representations in long-term memory. Similarly, the results suggest a match effect within the first language (Mandarin), but not within the second language (English). The findings of both experiments suggest that the first language was perceptually represented, regardless of whether it was Cantonese or Mandarin, regardless of the processing in working memory or long-term memory. No evidence was found for perceptual representations in the later-learned languages, regardless of high or low proficiency. Our study has implications for theories of language comprehension and embodied cognition

    Hydrogel Preparation Methods and Biomaterials for Wound Dressing

    No full text
    Wounds have become one of the causes of death worldwide. The metabolic disorder of the wound microenvironment can lead to a series of serious symptoms, especially chronic wounds that bring great pain to patients, and there is currently no effective and widely used wound dressing. Therefore, it is important to develop new multifunctional wound dressings. Hydrogel is an ideal dressing candidate because of its 3D structure, good permeability, excellent biocompatibility, and ability to provide a moist environment for wound repair, which overcomes the shortcomings of traditional dressings. This article first briefly introduces the skin wound healing process, then the preparation methods of hydrogel dressings and the characteristics of hydrogel wound dressings made of natural biomaterials and synthetic materials are introduced. Finally, the development prospects and challenges of hydrogel wound dressings are discussed

    Application of Hydrogels as Three-Dimensional Bioprinting Ink for Tissue Engineering

    No full text
    The use of three-dimensional bioprinting technology combined with the principle of tissue engineering is important for the construction of tissue or organ regeneration microenvironments. As a three-dimensional bioprinting ink, hydrogels need to be highly printable and provide a stiff and cell-friendly microenvironment. At present, hydrogels are used as bioprinting inks in tissue engineering. However, there is still a lack of summary of the latest 3D printing technology and the properties of hydrogel materials. In this paper, the materials commonly used as hydrogel bioinks; the advanced technologies including inkjet bioprinting, extrusion bioprinting, laser-assisted bioprinting, stereolithography bioprinting, suspension bioprinting, and digital 3D bioprinting technologies; printing characterization including printability and fidelity; biological properties, and the application fields of bioprinting hydrogels in bone tissue engineering, skin tissue engineering, cardiovascular tissue engineering are reviewed, and the current problems and future directions are prospected

    Preparing Sodium Alginate/Polyethyleneimine Spheres for Potential Application of Killing Tumor Cells by Reducing the Concentration of Copper Ions in the Lesions of Colon Cancer

    No full text
    Inhibition of residual malignant tumors in patients with colon cancer after operation is one of the difficulties in rehabilitation treatment. At present, using biocompatible materials to remove the copper ion which is the growth dependence of malignant tumors in the lesion site is considered to be the frontier means to solve this problem. In this work, we developed a sodium alginate (SA)/polyethyleneimine (PEI) hydrogel sphere via cross-linking method (SA/SP/SA; SP = SA/PEI) as an oral biomaterial for adsorbing and removing copper ions from colon cancer lesions. The evaluated results showed that the SA/PEI/SA (SPS) hydrogel sphere obtained the largest swelling rate at pH 8.3 which was the acid-base value of colon microenvironment and absorbed more copper ions compared with the SA control. The cell experiment presented that the SPS hydrogel sphere owned better compatibility on normal fibroblasts and promoted higher death of colon cancer cells compared with SA/PEI (SP) and SA control. Our data suggested that the SA/PEI hydrogel sphere had the potentiality as an oral biomaterial for inhibiting colon cancer cells
    corecore