700 research outputs found

    Detection of emission in the Si i 1082.7 nm line core in sunspot umbrae

    Full text link
    We analyze spectropolarimetric sunspot umbra observations taken in the near-infrared Si i 1082.7 nm line taking NLTE effects into account. The data were obtained with the GRIS instrument installed at the German GREGOR telescope. A point spread function (PSF) was constructed using prior Mercury observations with GRIS and the information provided by the adaptive optics system of the GREGOR telescope. The data were then deconvolved from the PSF using a principal component analysis deconvolution method and were analyzed via the NICOLE inversion code. The Si i 1082.7 nm line seems to be in emission in the umbra of the observed sunspot after the effects of scattered light are removed. We show how the spectral line shape of umbral profiles changes dramatically with the amount of scattered light. Indeed, the continuum levels range, on average, from 44% of the quiet Sun continuum intensity to about 20%. The inferred levels are in line with current model predictions and empirical umbral models. Current umbral empirical models are not able to reproduce the emission in the deconvolved umbral Stokes profiles. The results of the NLTE inversions suggests that to obtain the emission in the Si i 1082.7 nm line, the temperature stratification should first have a hump located at about log tau -2 and start rising at lower heights when moving into the transition region. This is, to our knowledge, the first time the Si i 1082.7 nm line is seen in emission in sunspot umbrae. The results show that the temperature stratification of current umbral models may be more complex than expected with the transition region located at lower heights above sunspot umbrae. Our finding might provide insights into understanding why the sunspot umbra emission in the millimeter spectral range is less than that predicted by current empirical umbral models

    Polar Field Reversal Observations with Hinode

    Full text link
    We have been monitoring yearly variation in the Sun's polar magnetic fields with the Solar Optical Telescope aboard {\it Hinode} to record their evolution and expected reversal near the solar maximum. All magnetic patches in the magnetic flux maps are automatically identified to obtain the number density and magnetic flux density as a function of th total magnetic flux per patch. The detected magnetic flux per patch ranges over four orders of magnitude (101510^{15} -- 102010^{20} Mx). The higher end of the magnetic flux in the polar regions is about one order of magnitude larger than that of the quiet Sun, and nearly that of pores. Almost all large patches (≥1018 \geq 10^{18} Mx) have the same polarity, while smaller patches have a fair balance of both polarities. The polarity of the polar region as a whole is consequently determined only by the large magnetic concentrations. A clear decrease in the net flux of the polar region is detected in the slow rising phase of the current solar cycle. The decrease is more rapid in the north polar region than in the south. The decrease in the net flux is caused by a decrease in the number and size of the large flux concentrations as well as the appearance of patches with opposite polarity at lower latitudes. In contrast, we do not see temporal change in the magnetic flux associated with the smaller patches (<1018 < 10^{18} Mx) and that of the horizontal magnetic fields during the years 2008--2012.Comment: 21 pages, 7 figures. Accepted for publication in Ap

    Photospheric response to an ellerman bomb-like event—an analogy of Sunrise/IMaX observations and MHD simulations

    Get PDF
    S. Danilovic et. al.©2017 The American Astronomical Society. All rights reserved.Ellerman Bombs are signatures of magnetic reconnection, which is an important physical process in the solar atmosphere. How and where they occur is a subject of debate. In this paper, we analyze Sunrise/IMaX data, along with 3D MHD simulations that aim to reproduce the exact scenario proposed for the formation of these features. Although the observed event seems to be more dynamic and violent than the simulated one, simulations clearly confirm the basic scenario for the production of EBs. The simulations also reveal the full complexity of the underlying process. The simulated observations show that the Fe i 525.02 nm line gives no information on the height where reconnection takes place. It can only give clues about the heating in the aftermath of the reconnection. However, the information on the magnetic field vector and velocity at this spatial resolution is extremely valuable because it shows what numerical models miss and how they can be improved.The German contribution to Sunrise and its reflight was funded by the Max Planck Foundation, the Strategic Innovations Fund of the President of the Max Planck Society (MPG), DLR, and private donations by supporting members of the Max Planck Society, which are all gratefully acknowledged. This work has benefited from the discussions at the meeting "Solar UV bursts—a new insight to magnetic reconnection" at the International Space Science Institute (ISSI) in Bern. The Spanish contribution was funded by the Ministerio de Economia y Competitividad under Projects ESP2013-47349-C6 and ESP2014-56169-C6, partially using European FEDER funds. The HAO contribution was partly funded through NASA grant number NNX13AE95G. The National Solar Observatory (NSO) is operated by the Association of Universities for Research in Astronomy (AURA) Inc. under a cooperative agreement with the National Science Foundation. This work was also partly supported by the BK21 plus program through the National Research Foundation (NRF), funded by the Ministry of Education of Korea.Peer reviewe

    A tale of two emergences: Sunrise II observations of emergence sites in a solar active region

    Get PDF
    R. Centeno et. al.©2017 The American Astronomical Society. All rights reserved. In 2013 June, the two scientific instruments on board the second Sunrise mission witnessed, in detail, a small-scale magnetic flux emergence event as part of the birth of an active region. The Imaging Magnetograph Experiment (IMaX) recorded two small (∼5′′\sim 5^{\prime\prime} ) emerging flux patches in the polarized filtergrams of a photospheric Fe i spectral line. Meanwhile, the Sunrise Filter Imager (SuFI) captured the highly dynamic chromospheric response to the magnetic fields pushing their way through the lower solar atmosphere. The serendipitous capture of this event offers a closer look at the inner workings of active region emergence sites. In particular, it reveals in meticulous detail how the rising magnetic fields interact with the granulation as they push through the Sun's surface, dragging photospheric plasma in their upward travel. The plasma that is burdening the rising field slides along the field lines, creating fast downflowing channels at the footpoints. The weight of this material anchors this field to the surface at semi-regular spatial intervals, shaping it in an undulatory fashion. Finally, magnetic reconnection enables the field to release itself from its photospheric anchors, allowing it to continue its voyage up to higher layers. This process releases energy that lights up the arch-filament systems and heats the surrounding chromosphere.The National Center for Atmospheric Research is sponsored by the National Science Foundation.The German contribution to Sunrise and its reflight was funded by the Max Planck Foundation, the Strategic Innovations Fund of the President of the Max Planck Society (MPG), DLR, and private donations by supporting members of the Max Planck Society, which is gratefully acknowledged. The Spanish contribution was funded by the Ministerio de Economía y Competitividad under Projects ESP2013-47349-C6 and ESP2014-56169-C6, partially using European FEDER funds. The HAO contribution was partly funded through NASA grant number NNX13AE95G. This work was partly supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea.Peer reviewe

    Magneto-static modeling from Sunrise/IMaX: application to an active region observed with Sunrise II

    Get PDF
    T. Wiegelmann et. al.©2017 The American Astronomical Society. All rights reserved.Magneto-static models may overcome some of the issues facing force-free magnetic field extrapolations. So far they have seen limited use and have faced problems when applied to quiet-Sun data. Here we present a first application to an active region. We use solar vector magnetic field measurements gathered by the IMaX polarimeter during the flight of the Sunrise balloon-borne solar observatory in 2013 June as boundary conditions for a magneto-static model of the higher solar atmosphere above an active region. The IMaX data are embedded in active region vector magnetograms observed with SDO/HMI. This work continues our magneto-static extrapolation approach, which was applied earlier to a quiet-Sun region observed with Sunrise I. In an active region the signal-to-noise-ratio in the measured Stokes parameters is considerably higher than in the quiet-Sun and consequently the IMaX measurements of the horizontal photospheric magnetic field allow us to specify the free parameters of the model in a special class of linear magneto-static equilibria. The high spatial resolution of IMaX (110–130 km, pixel size 40 km) enables us to model the non-force-free layer between the photosphere and the mid-chromosphere vertically by about 50 grid points. In our approach we can incorporate some aspects of the mixed beta layer of photosphere and chromosphere, e.g., taking a finite Lorentz force into account, which was not possible with lower-resolution photospheric measurements in the past. The linear model does not, however, permit us to model intrinsic nonlinear structures like strongly localized electric currents.The German contribution to Sunrise and its reflight was funded by the Max Planck Foundation, the Strategic Innovations Fund of the President of the Max Planck Society (MPG), DLR, and private donations by supporting members of the Max Planck Society, which is gratefully acknowledged. The Spanish contribution was funded by the Ministerio de Economía y Competitividad under Projects ESP2013-47349-C6 and ESP2014-56169-C6, partially using European FEDER funds. The HAO contribution was partly funded through NASA grant number NNX13AE95G. This work was partly supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea. The used HMI-data are courtesy of NASA/SDO and the HMI science team. TW acknowledges DLR-grant 50 OC 1301 and DFG-grant WI 3211/4-1. T.N. acknowledges support by the UK's Science and Technology Facilities Council via Consolidated Grants ST/K000950/1 and ST/N000609/1. D.N. was supported from GA ČR under grant numbers 16-05011S and 16-13277S. The Astronomical Institute Ondřejov is supported by the project RVO:67985815.Peer reviewe

    Kinematics of magnetic bright features in the solar photosphere

    Get PDF
    S. Jafarzadeh et. al.©2017 The American Astronomical Society. All rights reserved.Convective flows are known as the prime means of transporting magnetic fields on the solar surface. Thus, small magnetic structures are good tracers of turbulent flows. We study the migration and dispersal of magnetic bright features (MBFs) in intergranular areas observed at high spatial resolution with Sunrise/IMaX. We describe the flux dispersal of individual MBFs as a diffusion process whose parameters are computed for various areas in the quiet-Sun and the vicinity of active regions from seeing-free data. We find that magnetic concentrations are best described as random walkers close to network areas (diffusion index, γ=1.0\gamma =1.0), travelers with constant speeds over a supergranule (\gamma =1.9\mbox{--}2.0), and decelerating movers in the vicinity of flux emergence and/or within active regions (\gamma =1.4\mbox{--}1.5). The three types of regions host MBFs with mean diffusion coefficients of 130 km2 s−1, 80–90 km2 s−1, and 25–70 km2 s−1, respectively. The MBFs in these three types of regions are found to display a distinct kinematic behavior at a confidence level in excess of 95%.The German contribution to Sunrise and its reflight was funded by the Max Planck Foundation, the Strategic Innovations Fund of the President of the Max Planck Society (MPG), DLR, and private donations by supporting members of the Max Planck Society, which is gratefully acknowledged. The Spanish contribution was funded by the Ministerio de Economía y Competitividad under Projects ESP2013-47349-C6 and ESP2014-56169-C6, partially using European FEDER funds. The HAO contribution was partly funded through NASA grant number NNX13AE95G. This work was partly supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea. S.J. receives support from the Research Council of Norway.Peer reviewe

    Solar coronal loops associated with small-scale mixed polarity surface magnetic fields

    Get PDF
    L. P. Chitta et. al.©2017 The American Astronomical Society. All rights reserved. How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.L.P.C. acknowledges funding by the Max-Planck-Princeton Center for Plasma Physics and funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement No. 707837. The German contribution to Sunrise and its reflight was funded by the Max Planck Foundation, the Strategic Innovations Fund of the President of the Max Planck Society (MPG), DLR, and private donations by supporting members of the Max Planck Society, which is gratefully acknowledged. The Spanish contribution was funded by the Ministerio de Economía y Competitividad under Projects ESP2013-47349-C6 and ESP2014-56169-C6, partially using European FEDER funds. The HAO contribution was partly funded through NASA grant number NNX13AE95G. SDO data are the courtesy of NASA/SDO and the AIA, and HMI science teams. This work was partly supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of KoreaPeer reviewe

    Moving magnetic features around a pore

    Get PDF
    A. J. Kaithakkal et. al.©2017 The American Astronomical Society. All rights reserved.Spectropolarimetric observations from Sunrise/IMaX, obtained in 2013 June, are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity, with respect to the pore, are found to stream from its border at an average speed of 1.3 km s−1 and 1.2 km s−1, respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blueshifted, whereas same-polarity MMFs do not show any preference for up- or downflows. Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of ~1.2 × 1017 Mx.The German contribution to Sunrise and its reflight was funded by the Max Planck Foundation, the Strategic Innovations Fund of the President of the Max Planck Society (MPG), DLR, and private donations by supporting members of the Max Planck Society, which is gratefully acknowledged. The Spanish contribution was funded by the Ministerio de Economía y Competitividad under Projects ESP2013-47349-C6 and ESP2014-56169-C6, partially using European FEDER funds. The HAO contribution was partly funded through NASA grant number NNX13AE95G. This work was partly supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea.Peer reviewe

    Solar polarimetry through the K I lines at 770 nm

    Full text link
    We characterize the K I D1 & D2 lines in order to determine whether they could complement the 850 nm window, containing the Ca II infrared triplet lines and several Zeeman sensitive photospheric lines, that was studied previously. We investigate the effect of partial redistribution on the intensity profiles, their sensitivity to changes in different atmospheric parameters, and the spatial distribution of Zeeman polarization signals employing a realistic magnetohydrodynamic simulation. The results show that these lines form in the upper photosphere at around 500 km and that they are sensitive to the line of sight velocity and magnetic field strength at heights where neither the photospheric lines nor the Ca II infrared lines are. However, at the same time, we found that their sensitivity to the temperature essentially comes from the photosphere. Then, we conclude that the K I lines provide a complement to the lines in the 850 nm window for the determination of atmospheric parameters in the upper photosphere, especially for the line of sight velocity and the magnetic field.Comment: 10 pages, 9 figures, main journal publicatio

    Study of the polarization produced by the Zeeman effect in the solar Mg I b lines

    Full text link
    The next generation of solar observatories aim to understand the magnetism of the solar chromosphere. Therefore, it is crucial to understand the polarimetric signatures of chromospheric spectral lines. For this purpose, we here examine the suitability of the three Fraunhofer Mg I b1, b2, and b4 lines at 5183.6, 5172.7, and 5167.3 A, respectively. We start by describing a simplified atomic model of only 6 levels and 3 line transitions for computing the atomic populations of the 3p-4s (multiplet number 2) levels involved in the Mg I b line transitions assuming non-local thermodynamic conditions and considering only the Zeeman effect using the field-free approximation. We test this simplified atom against more complex ones finding that, although there are differences in the computed profiles, they are small compared with the advantages provided by the simple atom in terms of speed and robustness. After comparing the three Mg I lines, we conclude that the most capable one is the b2 line as b1 forms at similar heights and always show weaker polarization signals while b4 is severely blended with photospheric lines. We also compare Mg I b2 with the K I D1 and Ca II 8542 A lines finding that the former is sensitive to the atmospheric parameters at heights that are in between those covered by the latter two lines. This makes Mg I b2 an excellent candidate for future multi-line observations that aim to seamlessly infer the thermal and magnetic properties of different features in the lower solar atmosphere.Comment: 14 pages, 11 figures, and 5 table
    • …
    corecore