7,888 research outputs found
Non-equilibrium transport response from equilibrium transport theory
We propose a simple scheme that describes accurately essential
non-equilibrium effects in nanoscale electronics devices using equilibrium
transport theory. The scheme, which is based on the alignment and dealignment
of the junction molecular orbitals with the shifted Fermi levels of the
electrodes, simplifies drastically the calculation of current-voltage
characteristics compared to typical non-equilibrium algorithms. We probe that
the scheme captures a number of non-trivial transport phenomena such as the
negative differential resistance and rectification effects. It applies to those
atomic-scale junctions whose relevant states for transport are spatially placed
on the contact atoms or near the electrodes.Comment: 5 pages, 4 figures. Accepted in Physical Review
FILOU oscillation code
The present paper provides a description of the oscillation code FILOU, its
main features, type of applications it can be used for, and some representative
solutions. The code is actively involved in CoRoT/ESTA exercises (this volume)
for the preparation for the proper interpretation of space data from the CoRoT
mission. Although CoRoT/ESTA exercises have been limited to the oscillations
computations for non-rotating models, the main characteristic of FILOU is,
however, the computation of radial and non-radial oscillation frequencies in
presence of rotation. In particular, FILOU calculates (in a perturbative
approach) adiabatic oscillation frequencies corrected for the effects of
rotation (up to the second order in the rotation rate) including near
degeneracy effects. Furthermore, FILOU works with either a uniform rotation or
a radial differential rotation profile (shellular rotation), feature which
makes the code singular in the field.Comment: 6 pages, 5 figures. Astrophysics and Space Science (in press
Giant thermopower and figure of merit in single-molecule devices
We present a study of the thermopower and the dimensionless figure of
merit in molecules sandwiched between gold electrodes. We show that for
molecules with side groups, the shape of the transmission coefficient can be
dramatically modified by Fano resonances near the Fermi energy, which can be
tuned to produce huge increases in and . This shows that molecules
exhibiting Fano resonances have a high efficiency of thermoelectric cooling
which is not present for conventional un-gated molecules with only delocalized
states along their backbone.Comment: 4 pages, 4 figure
Symmetry-induced interference effects in metalloporphyrin wires
Organo-metallic molecular structures where a single metallic atom is embedded
in the organic backbone are ideal systems to study the effect of strong
correlations on their electronic structure. In this work we calculate the
electronic and transport properties of a series of metalloporphyrin molecules
sandwiched by gold electrodes using a combination of density functional theory
and scattering theory. The impact of strong correlations at the central
metallic atom is gauged by comparing our results obtained using conventional
DFT and DFT+U approaches. The zero bias transport properties may or may not
show spin-filtering behavior, depending on the nature of the d state closest to
the Fermi energy. The type of d state depends on the metallic atom and gives
rise to interference effects that produce different Fano features. The
inclusion of the U term opens a gap between the d states and changes
qualitatively the conductance and spin-filtering behavior in some of the
molecules. We explain the origin of the quantum interference effects found as
due to the symmetry-dependent coupling between the d states and other molecular
orbitals and propose the use of these systems as nanoscale chemical sensors. We
also demonstrate that an adequate treatment of strong correlations is really
necessary to correctly describe the transport properties of metalloporphyrins
and similar molecular magnets
Impact of Fano and Breit-Wigner resonances in the thermoelectric properties of nanoscale junctions
We show that the thermoelectric properties of nanoscale junctions featuring
states near the Fermi level strongly depend on the type of resonance generated
by such states, which can be either Fano or Breit-Wigner-like. We give general
expressions for the thermoelectric coefficients generated by the two types of
resonances and calculate the thermoelectric properties of these systems, which
encompass most nanoelectronics junctions. We include simulations of real
junctions where metalloporphyrin molecules bridge gold electrodes and prove
that for some metallic elements the thermoelectric properties show a large
variability. We find that the thermopower and figure of merit are largely
enhanced when the resonance gets close to the Fermi level and reach values much
higher than typical values found in other nanoscale junctions. The specific
value and temperature dependence are determined by a series of factors such as
the strength of the coupling between the state and other molecular states, the
symmetry of the state, the strength of the coupling between the molecule and
the leads and the spin filtering behavior of the junction.Comment: 9 pages, 11 figure
Impact of edge shape on the functionalities of graphene-based single-molecule electronics devices
We present an ab-initio analysis of the impact of edge shape and
graphene-molecule anchor coupling on the electronic and transport
functionalities of graphene-based molecular electronics devices. We analyze how
Fano-like resonances, spin filtering and negative differential resistance
effects may or may not arise by modifying suitably the edge shapes and the
terminating groups of simple organic molecules. We show that the spin filtering
effect is a consequence of the magnetic behavior of zigzag-terminated edges,
which is enhanced by furnishing these with a wedge shape. The negative
differential resistance effect is originated by the presence of two degenerate
electronic states localized at each of the atoms coupling the molecule to
graphene which are strongly affected by a bias voltage. The effect could thus
be tailored by a suitable choice of the molecule and contact atoms if edge
shape could be controlled with atomic precision.Comment: 11 pages, 20 figure
Universality in the transport response of molecular wires physisorbed onto graphene electrodes
We analyze the low-voltage transport response of large molecular wires
bridging graphene electrodes, where the molecules are physisorbed onto the
graphene sheets by planar anchor groups. In our study, the sheets are pulled
away to vary the gap length and the relative atomic positions. The molecular
wires are also translated in directions parallel and perpendicular to the
sheets. We show that the energy position of the Breit-Wigner molecular
resonances is universal for a given molecule, in the sense that it is
independent of the details of the graphene edges, gaps lengths or of the
molecule positions. We discuss the need to converge carefully the k-sampling to
provide reasonable values of the conductance.Comment: 6 pages, 6 figure
On the interpretation of echelle diagrams for solar-like oscillations. Effect of centrifugal distortion
This work aims at determining the impact of slow to moderate rotation on the
regular patterns often present in solar-like oscillation spectra. We focus on
the well-known asteroseismic diagnostic echelle diagrams, examining how
rotation may modify the estimates of the large and small spacings, as well as
the identification of modes. We illustrate the work with a real case: the
solar-like star Bootis. The modeling takes into account rotation effects
on the equilibrium models through an effective gravity and on the oscillation
frequencies through both perturbative and non-perturbative calculations. We
compare the results of both type of calculations in the context of the regular
spacings (like the small spacings and the scaled small spacings) and echelle
diagrams. We show that for echelle diagrams the perturbative approach remains
valid for rotational velocities up to 40-50 km/s. We show that for the
rotational velocities measured in solar-like stars, theoretical oscillation
frequencies must be corrected up to the second-order in terms of rotation rate,
including near degeneracy effects. For rotational velocities of about 16 km/S
and higher, diagnostics on large spacings and on modal identification through
echelle diagrams can be significantly altered by the presence of the
components of the rotationally split modes. We found these effects to be
detectable in the observed frequency range. Analysis of the effects of rotation
on small spacings and scaled small spacings reveals that these can be of the
order of, or even larger than surface effects, typically turbulence,
microscopic diffusion, etc. Furthermore, we show that scaled spacings are
significantly affected by stellar distortion even for small stellar rotational
velocities (from 10-15 km/s) and therefore some care must be taken when using
them as indicators for probing deep stellar interiors.Comment: 10 pages,5 figures, accepted for publication in ApJ;
http://iopscience.iop.org/0004-637X/721/1/537
Structure and electronic properties of molybdenum monoatomic wires encapsulated in carbon nanotubes
Monoatomic chains of molybdenum encapsulated in single walled carbon
nanotubes of different chiralities are investigated using density functional
theory. We determine the optimal size of the carbon nanotube for encapsulating
a single atomic wire, as well as the most stable atomic arrangement adopted by
the wire. We also study the transport properties in the ballistic regime by
computing the transmission coefficients and tracing them back to electronic
conduction channels of the wire and the host. We predict that carbon nanotubes
of appropriate radii encapsulating a Mo wire have metallic behavior, even if
both the nanotube and the wire are insulators. Therefore, encapsulating Mo
wires in CNT is a way to create conductive quasi one-dimensional hybrid
nanostructures.Comment: 8 pages, 10 figure
- …