4,780 research outputs found

    Nearly Massless Electrons in the Silicon Interface with a Metal Film

    Full text link
    We demonstrate the realization of nearly massless electrons in the most widely used device material, silicon, at the interface with a metal film. Using angle-resolved photoemission, we found that the surface band of a monolayer lead film drives a hole band of the Si inversion layer formed at the interface with the film to have nearly linear dispersion with an effective mass about 20 times lighter than bulk Si and comparable to graphene. The reduction of mass can be accounted for by repulsive interaction between neighboring bands of the metal film and Si substrate. Our result suggests a promising way to take advantage of massless carriers in silicon-based thin-film devices, which can also be applied for various other semiconductor devices.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Vegetation in the superior vena cava: a complication of tunneled dialysis catheters

    Get PDF

    The role of glass dynamics in the anomaly of the dielectric function of solid helium

    Full text link
    We propose that acousto-optical coupling of the electric field to strain fields around defects in disordered 4^4He is causing an increase of the dielectric function with decreasing temperature due to the arrested dynamics of defect excitations. A distribution of such low-energy excitations can be described within the framework of a glass susceptibility of a small volume fraction inside solid 4^4He. Upon lowering the temperature the relaxation time τ(T)\tau(T) of defects diverges and an anomaly occurs in the dielectric function ϵ(ω,T)\epsilon (\omega, T) when ωτ(T)1\omega \tau(T) \sim 1. Since ϵ(ω,T)\epsilon (\omega, T) satisfies the Kramers-Kronig relation, we predict an accompanying peak in the imaginary part of ϵ(ω,T)\epsilon (\omega, T) at the same temperature, where the largest change in the amplitude has been seen at fixed frequency. We also discuss recent measurements of the amplitude of the dynamic dielectric function that indicate a low-temperature anomaly similar to the one seen in the resonance frequency of the torsional oscillator and shear modulus experiments.Comment: 4 pages, 2 figure

    Cross-genotype protection of live-attenuated vaccine candidate for severe fever with thrombocytopenia syndrome virus in a ferret model

    Get PDF
    Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging tick-borne virus classified within the Banyangvirus genus. SFTS disease has been reported throughout East Asia since 2009 and is characterized by high fever, thrombocytopenia, and leukopenia and has a 12 to 30% case fatality rate. Due to the recent emergence of SFTSV, there has been little time to conduct research into preventative measures aimed at combatting the virus. SFTSV is listed as one of the World Health Organization’s Prioritized Pathogens for research into antiviral therapeutics and vaccine development. Here, we report 2 attenuated recombinant SFTS viruses that induce a humoral immune response in immunized ferrets and confer complete cross-genotype protection to lethal challenge. Animals infected with rHB29NSsP102A or rHB2912aaNSs (both genotype D) had a reduced viral load in both serum and tissues and presented without high fever, thrombocytopenia, or mortality associated with infection. rHB29NSsP102A- or rHB2912aaNSs-immunized animals developed a robust anti-SFTSV immune response against cross-genotype isolates of SFTSV. This immune response was capable of neutralizing live virus in a focus-reduction neutralization test (FRNT) and was 100% protective against a cross-genotype lethal challenge with the CB1/2014 strain of SFTSV (genotype B). Thus, using our midsized, aged ferret infection model, we demonstrate 2 live attenuated vaccine candidates against the emerging pathogen SFTSV
    corecore