30 research outputs found

    Frequency-mixed Single-source Domain Generalization for Medical Image Segmentation

    Full text link
    The annotation scarcity of medical image segmentation poses challenges in collecting sufficient training data for deep learning models. Specifically, models trained on limited data may not generalize well to other unseen data domains, resulting in a domain shift issue. Consequently, domain generalization (DG) is developed to boost the performance of segmentation models on unseen domains. However, the DG setup requires multiple source domains, which impedes the efficient deployment of segmentation algorithms in clinical scenarios. To address this challenge and improve the segmentation model's generalizability, we propose a novel approach called the Frequency-mixed Single-source Domain Generalization method (FreeSDG). By analyzing the frequency's effect on domain discrepancy, FreeSDG leverages a mixed frequency spectrum to augment the single-source domain. Additionally, self-supervision is constructed in the domain augmentation to learn robust context-aware representations for the segmentation task. Experimental results on five datasets of three modalities demonstrate the effectiveness of the proposed algorithm. FreeSDG outperforms state-of-the-art methods and significantly improves the segmentation model's generalizability. Therefore, FreeSDG provides a promising solution for enhancing the generalization of medical image segmentation models, especially when annotated data is scarce. The code is available at https://github.com/liamheng/Non-IID_Medical_Image_Segmentation

    An adaptive acoustoelectric signal decoding algorithm based on Fourier fitting for brain function imaging

    Get PDF
    Acousticelectric brain imaging (ABI), which is based on the acoustoelectric (AE) effect, is a potential brain function imaging method for mapping brain electrical activity with high temporal and spatial resolution. To further enhance the quality of the decoded signal and the resolution of the ABI, the decoding accuracy of the AE signal is essential. An adaptive decoding algorithm based on Fourier fitting (aDAF) is suggested to increase the AE signal decoding precision. The envelope of the AE signal is first split into a number of harmonics by Fourier fitting in the suggested aDAF. The least square method is then utilized to adaptively select the greatest harmonic component. Several phantom experiments are implemented to assess the performance of the aDAF, including 1-source with various frequencies, multiple-source with various frequencies and amplitudes, and multiple-source with various distributions. Imaging resolution and decoded signal quality are quantitatively evaluated. According to the results of the decoding experiments, the decoded signal amplitude accuracy has risen by 11.39% when compared to the decoding algorithm with envelope (DAE). The correlation coefficient between the source signal and the decoded timing signal of aDAF is, on average, 34.76% better than it was for DAE. Finally, the results of the imaging experiment show that aDAF has superior imaging quality than DAE, with signal-to noise ratio (SNR) improved by 23.32% and spatial resolution increased by 50%. According to the experiments, the proposed aDAF increased AE signal decoding accuracy, which is vital for future research and applications related to ABI

    BrLAS, a GRAS Transcription Factor From Brassica rapa, Is Involved in Drought Stress Tolerance in Transgenic Arabidopsis

    Get PDF
    GRAS proteins belong to a plant-specific transcription factor family and play roles in diverse physiological processes and environmental signals. In this study, we identified and characterized a GRAS transcription factor gene in Brassica rapa, BrLAS, an ortholog of Arabidopsis AtLAS. BrLAS was primarily expressed in the roots and axillary meristems, and localized exclusively in the nucleus of B. rapa protoplast cells. qRT-PCR analysis indicated that BrLAS was upregulated by exogenous abscisic acid (ABA) and abiotic stress treatment [polyethylene glycol (PEG), NaCl, and H2O2]. BrLAS-overexpressing Arabidopsis plants exhibited pleiotropic characteristics, including morphological changes, delayed bolting and flowering time, reduced fertility and delayed senescence. Transgenic plants also displayed significantly enhanced drought resistance with decreased accumulation of ROS and increased antioxidant enzyme activity under drought treatment compared with the wild-type. Increased sensitivity to exogenous ABA was also observed in the transgenic plants. qRT-PCR analysis further showed that expression of several genes involved in stress responses and associated with leaf senescence were also modified. These findings suggest that BrLAS encodes a stress-responsive GRASs transcription factor that positively regulates drought stress tolerance, suggesting a role in breeding programs aimed at improving drought tolerance in plants

    BrRLP48, Encoding a Receptor-Like Protein, Involved in Downy Mildew Resistance in Brassica rapa

    Get PDF
    Downy mildew, caused by Hyaloperonospora parasitica, is a major disease of Brassica rapa that causes large economic losses in many B. rapa-growing regions of the world. The genotype used in this study was based on a double haploid population derived from a cross between the Chinese cabbage line BY and a European turnip line MM, susceptible and resistant to downy mildew, respectively. We initially located a locus Br-DM04 for downy mildew resistance in a region about 2.7 Mb on chromosome A04, which accounts for 22.3% of the phenotypic variation. Using a large F2 mapping population (1156 individuals) we further mapped Br-DM04 within a 160 kb region, containing 17 genes encoding proteins. Based on sequence annotations for these genes, four candidate genes related to disease resistance, BrLRR1, BrLRR2, BrRLP47, and BrRLP48 were identified. Overexpression of both BrRLP47 and BrRLP48 using a transient expression system significantly enhanced the downy mildew resistance of the susceptible line BY. But only the leaves infiltrated with RNAi construct of BrRLP48 could significantly reduce the disease resistance in resistant line MM. Furthermore, promoter sequence analysis showed that one salicylic acid (SA) and two jasmonic acid-responsive transcript elements were found in BrRLP48 from the resistant line, but not in the susceptible one. Real-time PCR analysis showed that the expression level of BrRLP48 was significantly induced by inoculation with downy mildew or SA treatment in the resistant line MM. Based on these findings, we concluded that BrRLP48 was involved in disease resistant response and the disease-inducible expression of BrRLP48 contributed to the downy mildew resistance. These findings led to a new understanding of the mechanisms of resistance and lay the foundation for marker-assisted selection to improve downy mildew resistance in Brassica rapa

    Probing new physics in semileptonic

    No full text
    Recently, several observed anomalies in semileptonic B meson decays have implied hints of lepton flavor universal violation. Motivated by these inspiring results, we study the baryon decays Ξb→Λ(Ξc)τ−νˉτ\Xi _{b}\rightarrow \Lambda (\Xi _{c})\tau ^{-}\bar{\nu }_{\tau } which are mediated by b→u(c)τ−νˉτb\rightarrow u(c)\tau ^{-}\bar{\nu }_{\tau } transitions at quark level in the Standard Model and different New Physics scenarios. In the framework of the extended Standard Model on assuming a general effective theory, we constrain the Wilson coefficients of the NP operators using the experimental measurement results for the Br(Bc+→τ+ντ)Br(B_{c}^+\rightarrow \tau ^+ \nu _{\tau }), RπlR^{l}_{\pi }, RD(∗)R_{D^{(*)}}, RJ/ψR_{J/\psi } and FLD∗F_{L}^{D^{*}} anomalies and investigate their New Physics effects on several observables relative to the Ξb→Λ(Ξc)τ−νˉτ\Xi _{b}\rightarrow \Lambda (\Xi _{c})\tau ^{-}\bar{\nu }_{\tau } decays. We mention the differential branching fraction dBr/dq2{\text {d}}Br/{\text {d}}q^2, the ratio of branching fractions R(q2)R(q^2), the lepton-side forward–backward asymmetry AFB(q2)A_{FB}(q^2), the longitudinal polarization PLΛ(Ξc)(q2)P_{L}^{\Lambda (\Xi _{c})}(q^2) of the daughter baryons Λ(Ξc)\Lambda (\Xi _{c}) and PLτ(q2)P_{L}^{\tau }(q^2) of the τ\tau lepton, and the convexity parameter CF(q2)C_{F}(q^2)

    The privatization and commercialization of China's airports

    No full text
    This paper reviews the privatization and commercialization of China's airports. It looks at the history of change and the ways in which change has been brought about. There remain a number of challenges that constrain the further development of the airports. in the long run, both central and local authorities may have to pursue the course of even greater diversification and commercialization airport ownership structures, while the continuing lack of concrete and transparent performance indicators to gauge policy successes or failures is hampering this reform process as China's Aviation Industry muddles through the rough waters ahead. (C) 2008 Elsevier Ltd. All rights reserved

    A question on weakly â„‹-subgroups of a finite group

    No full text

    A New Measurement Technique of the Characteristics of Nutrient Artery Canals in Tibias Using Materialise’s Interactive Medical Image Control System Software

    No full text
    We established a novel measurement technique to evaluate the anatomic information of nutrient artery canals using Mimics (Materialise’s Interactive Medical Image Control System) software, which will provide full knowledge of nutrient artery canals to assist in the diagnosis of longitudinal fractures of tibia and choosing an optimal therapy. Here we collected Digital Imaging and Communications in Medicine (DICOM) format of 199 patients hospitalized in our hospital. All three-dimensional models of tibia in Mimics were reconstructed. In 3-matic software, we marked five points in tibia which located at intercondylar eminence, tibia tuberosity, outer ostium, inner ostium, and bottom of medial malleolus. We then recorded Z-coordinates values of the five points and performed statistical analysis. Our results indicate that foramen was found to be absent in 9 (2.3%) tibias, and 379 (95.2%) tibias had single nutrient foramen. The double foramina was observed in 10 (2.5%) tibias. The mean of tibia length was 358 ± 22 mm. The mean foraminal index was 31.8%  ± 3%. The mean distance between tibial tuberosity and foramen (TFD) is 66 ± 12 mm. Foraminal index has significant positive correlation with TFD (r = 0.721, P < 0.01). Length of nutrient artery canals has significant negative correlation with TFD (r = −0.340, P < 0.01) and has significant negative correlation with foraminal index (r=-0.541, P<0.01)

    Identification of a Monosomic Alien Chromosome Addition Line Responsible for the Purple Color Trait in Heading Chinese Cabbage

    No full text
    Purple heading Chinese cabbage has become popular in recent years due to its attractive color and health benefits. However, purple varieties remain rare, and the regulation mechanism of anthocyanin accumulation in Chinese cabbage is still largely unknown. By introducing the purple color trait from Brassica juncea, a new purple heading Chinese cabbage cultivar (18M-245) was generated with deep purple leaves at both the seedling and adult stages. Anthocyanin accumulation in 18M-245 increased when grown at low temperatures. FISH and genotyping results showed that the purple trait was caused by an alien chromosome addition line derived from the Brassica B genome. The LDOX coding gene BjuB014115 from the addition line was highly expressed in 18M-245, consistent with the results of anthocyanin accumulation. Meanwhile, several MYB and bHLH transcriptional factors from the Brassica A genome were found to directly bind to the promoter of BjuB014115, suggesting that interactions between the Brassica A and B genomes are involved in the regulatory network of anthocyanin biosynthesis in Chinese cabbage. Our results provide new insights into the regulation mechanism of anthocyanin biosynthesis in purple heading Chinese cabbage
    corecore