68 research outputs found

    Ultra‐Fast One‐Step Fabrication of Cu2Se Thermoelectric Legs With Ni–Al Electrodes by Plasma‐Activated Reactive Sintering Technique 

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133615/1/adem201500548-sup-0001-SupFigs-S1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133615/2/adem201500548.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133615/3/adem201500548_am.pd

    Improved Thermoelectric Performance of (Fe,Co)Sb\u3csub\u3e3\u3c/sub\u3e-Type Skutterudites from First-Principles

    Get PDF
    Skutterudite materials have been considered as promising thermoelectric candidates due to intrinsically good electrical conductivity and tailorable thermal conductivity. Options for improving thermal-to-electrical conversion efficiency include identifying novel materials, adding filler atoms, and substitutional dopants. Incorporating filler or substitutional dopant atoms in the skutterudite compounds can enhance phonon scattering, resulting in reduction of thermal conductivity, as well as improving electrical conductivity. The structures, electronic properties, and thermal properties of double-filled Ca0.5Ce0.5Fe4Sb12 and Co4Sb12-2xTexGex compounds (x = 0, 0.5, 1, 2, 3, and 6) have been studied using density functional theory-based calculations. Both Ca/Ce filler atoms in FeSb3 and Te/Ge substitution in CoSb3 cause a decrease in lattice constant for the compounds. As Te/Ge substitution concentration increase, lattice constant decreases and structural distortion of pnictogen rings in the compounds occurs. This indicates a break in cubic symmetry of the structure. The presence of fillers and substitutions cause an increase in electrical conductivity and a gradual decrease in electronic band gap. A transition from direct to indirect band-gap semiconducting behavior is found at x=3. Phonon density of states for both compounds indicate phonon band broadening by the incorporation of fillers and substitutional atoms. Both systems are also assumed to have acoustic-mode-dominated lattice thermal conductivity. For the Co4Sb12-xTexGex compounds, x=3 has the lowest phonon dispersion gradient and lattice thermal conductivity, agreeing well with experimental measurements. Our results exhibit the improvement of thermoelectric properties of skutterudite compounds through fillers and substitutional doping

    The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1–xZnxFeS2 with In Situ Nanoprecipitates

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136267/1/aenm201601299_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136267/2/aenm201601299.pd

    Multi‐Scale Microstructural Thermoelectric Materials: Transport Behavior, Non‐Equilibrium Preparation, and Applications

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137226/1/adma201602013_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137226/2/adma201602013.pd

    Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu2Se Composites

    Full text link
    The applications of mixed ionic–electronic conductors are limited due to phase instability under a high direct current and large temperature difference. Here, it is shown that Cu2Se is stabilized through regulating the behaviors of Cu+ ions and electrons in a Schottky heterojunction between the Cu2Se host matrix and in‐situ‐formed BiCuSeO nanoparticles. The accumulation of Cu+ ions via an ionic capacitive effect at the Schottky junction under the direct current modifies the space‐charge distribution in the electric double layer, which blocks the long‐range migration of Cu+ and produces a drastic reduction of Cu+ ion migration by nearly two orders of magnitude. Moreover, this heterojunction impedes electrons transferring from BiCuSeO to Cu2Se, obstructing the reduction reaction of Cu+ into Cu metal at the interface and hence stabilizes the ÎČ‐Cu2Se phase. Furthermore, incorporation of BiCuSeO in Cu2Se optimizes the carrier concentration and intensifies phonon scattering, contributing to the peak figure of merit ZT value of ≈2.7 at 973 K and high average ZT value of ≈1.5 between 400 and 973 K for the Cu2Se/BiCuSeO composites. This discovery provides a new avenue for stabilizing mixed ionic–electronic conduction thermoelectrics, and gives fresh insights into controlling ion migration in these ionic‐transport‐dominated materials.The space‐charge region between Cu2Se host matrix and in‐situ‐formed BiCuSeO under a direct current causes drastic suppression of the Cu+ ion migration in such composites and obstructs the reduction reaction of Cu+ into Cu metal. This, together with the effective regulation of carrier concentration as well as enhanced interfacial phonon scattering, greatly stabilizes the improved thermoelectric performance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163457/2/adma202003730-sup-0001-SuppMat.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163457/3/adma202003730_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163457/1/adma202003730.pd

    Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out?

    Get PDF

    Introductory Chapter: Traumatic Brain Injury

    No full text

    Hydrodynamic and Thermodynamic Nonequilibrium Effects around Shock Waves: Based on a Discrete Boltzmann Method

    No full text
    A shock wave that is characterized by sharp physical gradients always draws the medium out of equilibrium. In this work, both hydrodynamic and thermodynamic nonequilibrium effects around the shock wave are investigated using a discrete Boltzmann model. Via Chapman–Enskog analysis, the local equilibrium and nonequilibrium velocity distribution functions in one-, two-, and three-dimensional velocity space are recovered across the shock wave. Besides, the absolute and relative deviation degrees are defined in order to describe the departure of the fluid system from the equilibrium state. The local and global nonequilibrium effects, nonorganized energy, and nonorganized energy flux are also investigated. Moreover, the impacts of the relaxation frequency, Mach number, thermal conductivity, viscosity, and the specific heat ratio on the nonequilibrium behaviours around shock waves are studied. This work is helpful for a deeper understanding of the fine structures of shock wave and nonequilibrium statistical mechanics
    • 

    corecore