39,230 research outputs found
Algorithm based comparison between the integral method and harmonic analysis of the timing jitter of diode-based and solid-state pulsed laser sources
AbstractA comparison between two methods of timing jitter calculation is presented. The integral method utilizes spectral area of the single side-band (SSB) phase noise spectrum to calculate root mean square (rms) timing jitter. In contrast the harmonic analysis exploits the uppermost noise power in high harmonics to retrieve timing fluctuation. The results obtained show that a consistent timing jitter of 1.2ps is found by the integral method and harmonic analysis in gain-switched laser diodes with an external cavity scheme. A comparison of the two approaches in noise measurement of a diode-pumped Yb:KY(WO4)2 passively mode-locked laser is also shown in which both techniques give 2ps rms timing jitter
Common Warm Dust Temperatures Around Main-sequence Stars
We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-K0) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (~190 K and ~60 K for the inner and outer dust components, respectively)—slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ~150 K can deposit particles into an inner/warm belt, where the small grains are heated to T_(dust)~ 190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-K0 stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon
Precise and ultrafast molecular sieving through graphene oxide membranes
There has been intense interest in filtration and separation properties of
graphene-based materials that can have well-defined nanometer pores and exhibit
low frictional water flow inside them. Here we investigate molecular permeation
through graphene oxide laminates. They are vacuum-tight in the dry state but,
if immersed in water, act as molecular sieves blocking all solutes with
hydrated radii larger than 4.5A. Smaller ions permeate through the membranes
with little impedance, many orders of magnitude faster than the diffusion
mechanism can account for. We explain this behavior by a network of
nanocapillaries that open up in the hydrated state and accept only species that
fit in. The ultrafast separation of small salts is attributed to an 'ion
sponge' effect that results in highly concentrated salt solutions inside
graphene capillaries
Dirac Cosmology and the Acceleration of the Contemporary Universe
A model is suggested to unify the Einstein GR and Dirac Cosmology. There is
one adjusted parameter in our model. After adjusting the parameter
in the model by using the supernova data, we have calculated the gravitational
constant and the physical quantities of , and by using the present day quantities as the initial conditions and
found that the equation of state parameter equals to -0.83, the
ratio of the density of the addition creation and the
ratio of the density of the matter including multiplication creation, radiation
and normal matter at present. The results are self-consistent
and in good agreement with present knowledge in cosmology. These results
suggest that the addition creation and multiplication creation in Dirac
cosmology play the role of the dark energy and dark matter.Comment: 13 pages, 8 figure
Managerial Valuation of Applicant Credentials and Personal Traits in Hiring Decisions
We study how managers value applicant credentials and personal traits in hiring decisions. Using the ordered probit model, we confirm previous results – managers rank applicant traits higher than credentials. However, we also uncover patterns not previously observed – managerial valuations of some of these characteristics are dependent on managers' perception of the overall state of the economy, on firm and immediate workplace characteristics, and on managers' personal characteristics. Manager valuations of credentials vary with a large number of factors; this is not so for applicant personal traits. This is not surprising as most managers view the five traits considered "as extremely important."personality, credentials, hiring practices, ordered probit
Why small business owners should not worry about "money left on the table" in IPOs!
Purpose – this study aims to investigate how those directors of listed companies to make profits when their firms were listed to public.
Design/methodology/approach –This is an empirical study; we adopted the formula from Ritter (2001) for this research.
Findings -this study finds that directors of issuing companies usually get benefits from the money left on the table due to two factors. First, they usually retain larger percentage of shares before or after the companies going public; second, the first-day closing market price is normally higher than the initial file price ranges (defined as the expected price per share by issuing companies just before the firms go public).
Originality/value - the findings may be used for future academic research literatures which focus on IPO or primary market. This research would help individual investors better understanding primary market especially IPO market
Renormalization of the Sigma-Omega model within the framework of U(1) gauge symmetry
It is shown that the Sigma-Omega model which is widely used in the study of
nuclear relativistic many-body problem can exactly be treated as an Abelian
massive gauge field theory. The quantization of this theory can perfectly be
performed by means of the general methods described in the quantum gauge field
theory. Especially, the local U(1) gauge symmetry of the theory leads to a
series of Ward-Takahashi identities satisfied by Green's functions and proper
vertices. These identities form an uniquely correct basis for the
renormalization of the theory. The renormalization is carried out in the
mass-dependent momentum space subtraction scheme and by the renormalization
group approach. With the aid of the renormalization boundary conditions, the
solutions to the renormalization group equations are given in definite
expressions without any ambiguity and renormalized S-matrix elememts are
exactly formulated in forms as given in a series of tree diagrams provided that
the physical parameters are replaced by the running ones. As an illustration of
the renormalization procedure, the one-loop renormalization is concretely
carried out and the results are given in rigorous forms which are suitable in
the whole energy region. The effect of the one-loop renormalization is examined
by the two-nucleon elastic scattering.Comment: 32 pages, 17 figure
Relation between phase and dwell times for quantum tunneling of a relativistically propagating particle
The general and explicit relation between the phase time and the dwell time
for quantum tunneling of a relativistically propagating particle is
investigated and quantified. In analogy with previously obtained
non-relativistic results, it is shown that the group delay can be described in
terms of the dwell time and a self-interference delay. Lessons concerning the
phenomenology of the relativistic tunneling are drawn
- …