135 research outputs found

    Design of a Variable Reactor for Load Balancing and Harmonics Elimination

    Full text link
    This paper presents the design of a variable inductor with a rotational magnetic core whose position is controlled in a closed-loop system. This magnetic structure facilitates the impedance changes which may be used for load balancing, harmonics elimination, transient response improvement, and as a controlled reactor in static VAr compensation (SVC). The design of the inductor and analysis of its impedance change caused by positioning a movable element are carried out by using the finite element method. As a result, the variation range of the impedance is determined. The proposed variable inductor is compared with a typical SVC reactor. The results show good performances in static var compensation with higher reliability and no harmonics generated. For closed-loop control, a secondorder sliding mode controller is designed for position control of the rotating core via a DC motor. Simulation results of the proposed system present highly robust and accurate responses without control chattering in face of nonlinearities and disturbances

    Laboratory demonstration for model predictive multivariable control with a coupled drive system

    Full text link
    Teaching multivariable control usually involves a certain level of mathematical sophistication and hence requires some labaratorial exemplification of the material given in formal lectures. This paper reports on a hands-on approach to multivariable control education via the implementation of a model predictive controller on a two-input, two output coupled drive apparatus. This scaled-down system represents many industrial processes while provides an excellent set-up for demonstrating the cross-coupled effects in multi-input multi-output systems. Here, a model predictive controller (MPC) is developed and implemented on the basis of a constrained optimization problem to show control performance via the belt tension and velocity outputs, demonstrate the decoupling capability, and also illustrate such issues as control input saturation, the selection of operating point, reference inputs, and system robustness to external disturbance and varying parameters. The implementation is based on Labview and MATLAB Model Predictive Control Toolbox. ©2010 IEEE. Model predictive Control

    Integral controller design for nonlinear systems using inverse optimal control

    Full text link
    This paper proposes an integral controller design scheme for nonlinear systems based on optimal control and the passivity theorem in order to suppress the effect of external disturbances. The main strategy is to augment an optimal controller with a PI type controller. To guarantee the proposed controller has a desired stability margin, the passivity-based design method is introduced. Here, the inverse optimal control technique is employed to avoid the need of solving a Hamilton-Jacobi equation. An illustrative example is given to show the design procedure and the controller effectiveness. © 2008 IEEE

    HVAC integrated control for energy saving and comfort enhancement

    Full text link
    The overall attainable reduction in energy consumption and enhancement of human comfort of Heating, Ventilating, and Air Conditioning (HVAC) systems are dependant on thermodynamic behavior of buildings as well as performance of HVAC components and device control strategies. In this paper by refining the models of HVAC components, the influence of integrated control of shading blinds and natural ventilation on HVAC system performance is discussed in terms of energy savings and human comfort. An actual central cooling plant of a commercial building in the hot and dry climate condition is used for experimental data collection, modeling and strategy testing. Subject to comfort constraints, interactions between the building's transient hourly load and system performance are considered to show how the system energy consumption varies at different control strategies. For validation, a holistic approach is proposed to integrate dynamic operations of shading devices with direct and indirect ventilation of a commercial building equipped with a central cooling plant. Simulation results are provided to show possibility of significant energy saving and comfort enhancement by implementing proper control strategies

    Prevention of Neurite Spine Loss Induced by Dopamine D2 Receptor Overactivation in Striatal Neurons.

    Get PDF
    Psychosis has been considered a disorder of impaired neuronal connectivity. Evidence for excessive formation of dopamine D2 receptor (D2R) - disrupted in schizophrenia 1 (DISC1) complexes has led to a new perspective on molecular mechanisms involved in psychotic symptoms. Here, we investigated how excessive D2R-DISC1 complex formation induced by D2R agonist quinpirole affects neurite growth and dendritic spines in striatal neurons. Fluorescence resonance energy transfer (FRET), stochastic optical reconstruction microscopy (STORM), and cell penetrating-peptide delivery were used to study the cultured striatal neurons from mouse pups. Using these striatal neurons, our study showed that: (1) D2R interacted with DISC1 in dendritic spines, neurites and soma of cultured striatal neurons; (2) D2R and DISC1 complex accumulated in clusters in dendritic spines of striatal neurons and the number of the complex were reduced after application of TAT-D2pep; (3) uncoupling D2R-DISC1 complexes by TAT-D2pep protected neuronal morphology and dendritic spines; and (4) TAT-D2pep prevented neurite and dendritic spine loss, which was associated with restoration of expression levels of synaptophysin and PSD-95. In addition, we found that Neuropeptide Y (NPY) and GSK3β were involved in the protective effects of TAT-D2pep on the neurite spines of striatal spiny projection neurons. Thus, our results may offer a new strategy for precisely treating neurite spine deficits associated with schizophrenia

    Crystal structure of Zen4 in the apo state reveals a missing conformation of kinesin

    Full text link
    © 2017 The Author(s). Kinesins hydrolyse ATP to transport intracellular cargoes along microtubules. Kinesin neck linker (NL) functions as the central mechano-chemical coupling element by changing its conformation through the ATPase cycle. Here we report the crystal structure of kinesin-6 Zen4 in a nucleotide-free, apo state, with the NL initial segment (NIS) adopting a backward-docked conformation and the preceding α6 helix partially melted. Single-molecule fluorescence resonance energy transfer (smFRET) analyses indicate the NIS of kinesin-1 undergoes similar conformational changes under tension in the two-head bound (2HB) state, whereas it is largely disordered without tension. The backward-docked structure of NIS is essential for motility of the motor. Our findings reveal a key missing conformation of kinesins, which provides the structural basis of the stable 2HB state and offers a tension-based rationale for an optimal NL length to ensure processivity of the motor

    Vesicle Size Regulates Nanotube Formation in the Cell

    Full text link
    Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100-200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500-1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling

    Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor

    Full text link
    © 2016, National Academy of Sciences. All rights reserved. The motor function of vertebrate myosin-5a is inhibited by its tail in a Ca2+-dependent manner. We previously demonstrated that the calmodulin (CaM) bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a is responsible for the Ca2+-dependent regulation of myosin-5a. We have solved the crystal structure of a truncated myosin-5a containing the motor domain and IQ1 (MD-IQ1) complexed with Ca2+-bound CaM (Ca2+-CaM) at 2.5-Å resolution. Compared with the structure of the MD-IQ1 complexed with essential light chain (an equivalent of apo-CaM), MD-IQ1/Ca2+-CaM displays large conformational differences in IQ1/CaM and little difference in the motor domain. In the MD-IQ1/Ca2+-CaM structure, the N-lobe and the C-lobe of Ca2+-CaM adopt an open conformation and grip the C-terminal and the N-terminal portions of the IQ1, respectively. Remarkably, the interlobe linker of CaM in IQ1/Ca2+-CaM is in a position opposite that in IQ1/apo-CaM, suggesting that CaM flip-flops relative to the IQ1 during the Ca2+ transition. We demonstrated that CaM continuously associates with the IQ1 during the Ca2+ transition and that the binding of CaM to IQ1 increases Ca2+ affinity and substantially changes the kinetics of the Ca2+ transition, suggesting that the IQ1/CaM complex functions as an intact Ca2+ sensor responding to distinct calcium signals

    ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation.

    Full text link
    A human cell contains hundreds to thousands of mitochondrial DNA (mtDNA) packaged into nucleoids. Currently, the segregation and allocation of nucleoids are thought to be passively determined by mitochondrial fusion and division. Here we provide evidence, using live-cell super-resolution imaging, that nucleoids can be actively transported via KIF5B-driven mitochondrial dynamic tubulation (MDT) activities that predominantly occur at the ER-mitochondria contact sites (EMCS). We further demonstrate that a mitochondrial inner membrane protein complex MICOS links nucleoids to Miro1, a KIF5B receptor on mitochondria, at the EMCS. We show that such active transportation is a mechanism essential for the proper distribution of nucleoids in the peripheral zone of the cell. Together, our work identifies an active transportation mechanism of nucleoids, with EMCS serving as a key platform for the interplay of nucleoids, MICOS, Miro1, and KIF5B to coordinate nucleoids segregation and transportation
    • …
    corecore