139 research outputs found

    Interpreting The 750 GeV Diphoton Excess Within Topflavor Seesaw Model

    Get PDF
    We propose to interpret the 750 GeV diphoton excess in a typical topflavor seesaw model. The new resonance X can be identified as a CP-even scalar emerging from a certain bi-doublet Higgs field. Such a scalar can couple to charged scalars, fermions as well as heavy gauge bosons predicted by the model, and consequently all of the particles contribute to the diphoton decay mode of the X. Numerical analysis indicates that the model can predict the central value of the diphoton excess without contradicting any constraints from 8 TeV LHC, and among the constraints, the tightest one comes from the Z \gamma channel, \sigma_{8 {\rm TeV}}^{Z \gamma} \lesssim 3.6 {\rm fb}, which requires \sigma_{13 {\rm TeV}}^{\gamma \gamma} \lesssim 6 {\rm fb} in most of the favored parameter space.Comment: Major changes, 17 pages, 4 figure, typos corrected, calculation details adde

    Interpreting the 750 GeV diphoton excess by the singlet extension of the Manohar-Wise Model

    Full text link
    The evidence of a new scalar particle XX from the 750 GeV diphoton excess, and the absence of any other signal of new physics at the LHC so far suggest the existence of new colored scalars, which may be moderately light and thus can induce sizable XggX g g and XγγX \gamma \gamma couplings without resorting to very strong interactions. Motivated by this speculation, we extend the Manohar-Wise model by adding one gauge singlet scalar field. The resulting theory then predicts one singlet dominated scalar ϕ\phi as well as three kinds of color-octet scalars, which can mediate through loops the ϕgg\phi gg and ϕγγ\phi \gamma \gamma interactions. After fitting the model to the diphoton data at the LHC, we find that in reasonable parameter regions the excess can be explained at 1σ1\sigma level by the process gg→ϕ→γγ g g \to \phi \to \gamma \gamma, and the best points predict the central value of the excess rate with χmin2=2.32\chi_{min}^2=2.32, which corresponds to a pp-value of 0.680.68. We also consider the constraints from various LHC Run I signals, and we conclude that, although these constraints are powerful in excluding the parameter space of the model, the best points are still experimentally allowed.Comment: 19 pages, 3 figure

    Accelerated Light Dark Matter-Earth Inelastic Scattering in Direct Detection

    Full text link
    The Earth-stopping effect plays a crucial role in the direct detection of sub-GeV dark matter. Besides the elastic scattering process, the quasi-elastic and deep inelastic scatterings between dark matter and nucleus that are usually neglected can dominate the interaction, especially in the accelerated dark matter scenarios, which may affect the dark matter detection sensitivity significantly for the underground experiments. We calculate such inelastic scattering contributions in the Earth-stopping effect and illustrate the essence of our argument with the atmospheric dark matter. With the available data, we find that the resulting upper limits on the atmospheric dark matter-nucleus scattering cross-section can differ from those only considering the elastic scattering process by one order of magnitude.Comment: 7 pages, 4 figure

    Spin-dependent sub-GeV Inelastic Dark Matter-electron scattering and Migdal effect: (I). Velocity Independent Operator

    Full text link
    The ionization signal provide an important avenue of detecting light dark matter. In this work, we consider the sub-GeV inelastic dark matter and use the non-relativistic effective field theory (NR-EFT) to derive the constraints on the spin-dependent DM-electron scattering and DM-nucleus Migdal scattering. Since the recoil electron spectrum of sub-GeV DM is sensitive to tails of galactic DM velocity distributions, we also compare the bounds on corresponding scattering cross sections in Tsallis, Empirical and standard halo models. With the XENON1T data, we find that the exclusion limits of the DM-proton/neutron and DM-electron scattering cross sections for exothermic inelastic DM are much stronger that those for the endothermic inelastic DM. Each limits of the endothermic inelastic DM can differ by an order of magnitude at most in three considered DM velocity distributions.Comment: 36 pages, 7 figure

    Heavy Bino and Slepton for Muon g-2 Anomaly

    Full text link
    In light of very recent E989 experimental result, we investigate the possibility that heavy sparticles explain the muon g-2 anomaly. We focus on the bino-smuon loop in an effective SUSY scenario, where a light gravitino plays the role of dark matter and other sparticles are heavy. Due to the enhancement of left-right mixing of smuons by heavy higgsinos, the contribution of bino-smuon loop can sizably increase the prediction of muon g-2 to the experimental value. Under collider and vacuum stability constraints, we find that TeV scale bino and smuon can still account for the new muon g-2 anomaly. The implications for LHC phenomenology are also discussed.Comment: 10 pages,1 figure;Published in:Nucl.Phys.B 969(2021)115481,add some discussions and references, matches published versio
    • …
    corecore