100 research outputs found

    The dynamics of highly excited electronic systems: Applications of the electron force field

    Get PDF
    Highly excited heterogeneous complex materials are essential elements of important processes, ranging from inertial confinement fusion to semiconductor device fabrication. Understanding the dynamics of these systems has been challenging because of the difficulty in extracting mechanistic information from either experiment or theory. We describe here the electron force field (eFF) approximation to quantum mechanics which provides a practical approach to simulating the dynamics of such systems. eFF includes all the normal electrostatic interactions between electrons and nuclei and the normal quantum mechanical description of kinetic energy for the electrons, but contains two severe approximations: first, the individual electrons are represented as floating Gaussian wave packets whose position and size respond instantaneously to various forces during the dynamics; and second, these wave packets are combined into a many-body wave function as a Hartree product without explicit antisymmetrization. The Pauli principle is accounted for by adding an extra spin-dependent term to the Hamiltonian. These approximations are a logical extension of existing approaches to simulate the dynamics of fermions, which we review. In this paper, we discuss the details of the equations of motion and potentials that form eFF, and evaluate the ability of eFF to describe ground-state systems containing covalent, ionic, multicenter, and/or metallic bonds. We also summarize two eFF calculations previously reported on electronically excited systems: (1) the thermodynamics of hydrogen compressed up to ten times liquid density and heated up to 200 000 K; and (2) the dynamics of Auger fragmentation in a diamond nanoparticle, where hundreds of electron volts of excitation energy are dissipated over tens of femtoseconds. These cases represent the first steps toward using eFF to model highly excited electronic processes in complex materials

    Excited Electron Dynamics Modeling of Warm Dense Matter

    Get PDF
    We present a model (the electron force field, or eFF) based on a simplified solution to the time-dependent Schrödinger equation that with a single approximate potential between nuclei and electrons correctly describes many phases relevant for warm dense hydrogen. Over a temperature range of 0 to 100 000 K and densities up to 1 g/cm^3, we find excellent agreement with experimental, path integral Monte Carlo, and linear mixing equations of state, as well as single-shock Hugoniot curves from shock compression experiments. In principle eFF should be applicable to other warm dense systems as well

    High-temperature high-pressure phases of lithium from electron force field (eFF) quantum electron dynamics simulations

    Get PDF
    We recently developed the electron force field (eFF) method for practical nonadiabatic electron dynamics simulations of materials under extreme conditions and showed that it gave an excellent description of the shock thermodynamics of hydrogen from molecules to atoms to plasma, as well as the electron dynamics of the Auger decay in diamondoids following core electron ionization. Here we apply eFF to the shock thermodynamics of lithium metal, where we find two distinct consecutive phase changes that manifest themselves as a kink in the shock Hugoniot, previously observed experimentally, but not explained. Analyzing the atomic distribution functions, we establish that the first phase transition corresponds to (i) an fcc-to-cl16 phase transition that was observed previously in diamond anvil cell experiments at low temperature and (ii) a second phase transition that corresponds to the formation of a new amorphous phase (amor) of lithium that is distinct from normal molten lithium. The amorphous phase has enhanced valence electron-nucleus interactions due to localization of electrons into interstitial locations, along with a random connectivity distribution function. This indicates that eFF can characterize and compute the relative stability of states of matter under extreme conditions (e.g., warm dense matter)

    Enhancing 2-Iodoxybenzoic Acid Reactivity by Exploiting a Hypervalent Twist

    Get PDF
    A rearrangement of hypervalent bonds, or twisting, proves to be the rate-determining step in the 2-iodoxybenzoic acid (IBX) oxidation of alcohols. From this insight, derived from density functional theory calculations, we explain why IBX oxidizes large alcohols faster than small ones and propose a modification to the reagent predicted to make it more active

    Accurate Energies and Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional

    Get PDF
    We predict structures and energies of water clusters containing up to 19 waters with X3LYP, an extended hybrid density functional designed to describe noncovalently bound systems as accurately as covalent systems. Our work establishes X3LYP as the most practical ab initio method today for calculating accurate water cluster structures and energies. We compare X3LYP/aug-cc-pVTZ energies to the most accurate theoretical values available (n = 2−6, 8), MP2 with basis set superposition error (BSSE) corrections extrapolated to the complete basis set limit. Our energies match these reference energies remarkably well, with a root-mean-square difference of 0.1 kcal/mol/water. X3LYP also has ten times less BSSE than MP2 with similar basis sets, allowing one to neglect BSSE at moderate basis sizes. The net result is that X3LYP is ∌100 times faster than canonical MP2 for moderately sized water clusters

    Substituent Effects and Nearly Degenerate Transition States: Rational Design of Substrates for the Tandem Wolff−Cope Reaction

    Get PDF
    The substrate scope for a ketene-assisted Cope (tandem Wolff−Cope) reaction is elucidated from first-principles quantum mechanics. An alternate pathway (trans) leading to an undesired and unstable product lies perilously close (∌2.5 kcal/mol) to the primary (cis) reaction pathway; this near-degeneracy arises from preferential ketene stabilization of a radicaloid trans transition state over an aromatic cis transition state. Normally, substitution at “forbidden” sites causes the alternate pathway to be favored and the reaction to fail, but using simple conformational analysis principles we design substrates that defy this rule

    The Development of a Facile Tandem Wolff/Cope Rearrangement for the Synthesis of Fused Carbocyclic Skeletons

    Get PDF
    A set of mild processes for the conversion of vinyl cyclopropyl diazo ketones to highly functionalized cycloheptadienones and vinyl cyclopentenones by use of a target-inspired tandem Wolff/Cope rearrangement sequence is described. A divergent reaction course of the vinyl cyclopropyl diazo ketone substrates under sono- or photochemical activation provides good to excellent yields (55−98%) of the product cycloheptadienones and vinyl cyclopentenones
    • 

    corecore