85 research outputs found

    Coronary and contractile effects of intracoronary bradykinin and their modulation by ACE inhibitor in normal conscious dogs

    Get PDF
    为满足各种各样的应用程序的需求,EJB容器的服务框架必须能支持各种服务的集成.该文给出了一个EJB容器的可扩展服务框架的设计和实现.该EHB容器允许服务以Interceptor的方式加入容器.当EJB容器发生函数调用等事件时,容器自动触发这些相应的服务,从而能实现透明地在EJB容器中添加额外的服务

    Ocean submesoscales as a key component of the global heat budget

    Get PDF
    Recent studies highlight that oceanic motions associated with horizontal scales smaller than 50 km, defined here as submesoscales, lead to anomalous vertical heat fluxes from colder to warmer waters. This unique transport property is not captured in climate models that have insufficient resolution to simulate these submesoscale dynamics. Here, we use an ocean model with an unprecedented resolution that, for the first time, globally resolves submesoscale heat transport. Upper-ocean submesoscale turbulence produces a systematically-upward heat transport that is five times larger than mesoscale heat transport, with winter-time averages up to 100 W/m^2 for mid-latitudes. Compared to a lower-resolution model, submesoscale heat transport warms the sea surface up to 0.3 °C and produces an upward annual-mean air–sea heat flux anomaly of 4–10 W/m^2 at mid-latitudes. These results indicate that submesoscale dynamics are critical to the transport of heat between the ocean interior and the atmosphere, and are thus a key component of the Earth’s climate

    Fe controls the reproduction of zoogloea and sludge bulking in oil-in-iron wastewater

    Get PDF
    Following the final biological treatment, the oil wastewater is intended for reuse in factory floor cleaning. However, the presence of varying concentrations of oil-in-iron characteristic wastewater has led to a sudden surge in sludge SV to 90%, adversely affecting water treatment efficiency. In this study, we conducted an analysis of microbial community structure and selected pepA and 16S rRNA primers to assess the proportions of zoogloea and total bacteria in sludge bulking. Iron concentration plays a pivotal role, and it should be maintained at or 0.6 mgL−1. By selective discharging of sludge to maintain 1,700 mgL−1, we minimized iron enrichment, thereby enhancing the sludge settling performance. Maintaining dissolved oxygen (DO) at 3.5 mgL−1 supports the aerobic sludge's ability to replenish iron in its system, while the oil content should be controlled at 145.33 mgL−1 to reduce the release of iron into the water. The order of significance is as follows: sludge concentration > Fe amount > DO > oil content. Implementing this approach was applied in the field for 1 week and effectively reduced the SV from 90% to approximately 43%. The interaction between quorum sensing molecules related to sludge bulking and iron, leading to the formation of complexes, underscores the significance of controlling iron levels. This study offers a valuable case for practical application of quorum quenching technology in oil wastewater, presenting a rapid, efficient, and cost-effective solution to address the issue of sludge bulking

    Analysis of the correlation between the systemic inflammatory response index and the severity of coronary vasculopathy

    Get PDF
    This study aims to analyze the correlation between Systemic Inflammatory Response Index (SIRI) and the severity of coronary artery stenosis in patients with coronary heart disease (CHD). It also aims to assess the predictive value of SIRI for the severity of coronary artery stenosis. A total of 2990 patients who underwent coronary angiography were included in this study. The Gensini score was used to estimate the severity of coronary vascular lesions. The predictive ability of SIRI for CHD was evaluated using receiver operating characteristic (ROC) curves. Binary multivariate logistic regression analysis was used to predict the likelihood of CHD based on the SIRI index. The results showed that people with higher SIRI index were more likely to have CHD (P < 0.001). After controlling for other risk factors, the highest quartile had a significantly higher incidence of coronary artery disease compared to the lowest quartile (odds ratio [OR] 2.25, 95% confidence interval [CI] 1.73-3.92, P < 0.001). Furthermore, the Gensini score was significantly higher in the fourth quartile group (T4) compared to the first (T1) and second (T2) quartile groups (P < 0.001). Additionally, the SIRI index was significantly higher in the group with severe coronary artery lesions compared to the mild and moderate groups (P < 0.001). The SIRI index also showed a higher predictive ability for the extent of coronary lesions under the ROC curve compared to other commonly used markers, including platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and neutrophil-to-lymphocyte ratio (NLR) (P < 0.001). Therefore, SIRI index positively correlates with coronary artery stenosis in CHD patients, serving as an effective early screening marker for assessing stenosis severity.

    FGF18 Enhances Migration and the Epithelial-Mesenchymal Transition in Breast Cancer by Regulating Akt/GSK3β/Β-Catenin Signaling

    Get PDF
    Background/Aims: Fibroblast growth factors (FGFs) and their high-affinity receptors contribute to autocrine and paracrine growth stimulation in several human malignant tumors, including breast cancer. However, the mechanisms underlying the carcinogenic actions of FGF18 remain unclear. Methods: The transcription level of FGF18 under the hypoxic condition was detected with quantitative PCR (qPCR). A wound-healing assay was performed to assess the role of FGF18 in cell migration. A clonogenicity assay was used to determine whether FGF18 silencing affected cell clonogenicity. Western blotting was performed to investigate Akt/GSK3β/β-catenin pathway protein expression. Binding of β-catenin to the target gene promoter was determined by chromatin immunoprecipitation (ChIP) assays. Results: FGF18 promoted the epithelial-mesenchymal transition (EMT) and migration in breast cancer cells through activation of the Akt/GSK3β/β-catenin pathway. FGF18 increased Akt-Ser473 and -Thr308 phosphorylation, as well as that of GSK3β-Ser9. FGF18 also enhanced the transcription of proliferation-related genes (CDK2, CCND2, Ki67), metastasis-related genes (TGF-β, MMP-2, MMP-9), and EMT markers (Snail-1, Snail-2, N-cadherin, vimentin, TIMP1). β-catenin bound to the target gene promoter on the ChIP assay. Conclusion: FGF18 contributes to the migration and EMT of breast cancer cells following activation of the Akt/GSK3β/β-catenin pathway. FGF18 expression may be a potential prognostic therapeutic marker for breast cancer

    Applications of nanogenerators for biomedical engineering and healthcare systems

    Get PDF
    The dream of human beings for long living has stimulated the rapid development of biomedical and healthcare equipment. However, conventional biomedical and healthcare devices have shortcomings such as short service life, large equipment size, and high potential safety hazards. Indeed, the power supply for conventional implantable device remains predominantly batteries. The emerging nanogenerators, which harvest micro/nanomechanical energy and thermal energy from human beings and convert into electrical energy, provide an ideal solution for self-powering of biomedical devices. The combination of nanogenerators and biomedicine has been accelerating the development of self-powered biomedical equipment. This article first introduces the operating principle of nanogenerators and then reviews the progress of nanogenerators in biomedical applications, including power supply, smart sensing, and effective treatment. Besides, the microbial disinfection and biodegradation performances of nanogenerators have been updated. Next, the protection devices have been discussed such as face mask with air filtering function together with real-time monitoring of human health from the respiration and heat emission. Besides, the nanogenerator devices have been categorized by the types of mechanical energy from human beings, such as the body movement, tissue and organ activities, energy from chemical reactions, and gravitational potential energy. Eventually, the challenges and future opportunities in the applications of nanogenerators are delivered in the conclusive remarks.Web of Science4
    corecore