30 research outputs found

    mixiTUI:A Tangible Sequencer for Electronic Live Performances

    Get PDF
    With the rise of crowdsourcing and mobile crowdsensing techniques, a large number of crowdsourcing applications or platforms (CAP) have appeared. In the mean time, CAP-related models and frameworks based on different research hypotheses are rapidly emerging, and they usually address specific issues from a certain perspective. Due to different settings and conditions, different models are not compatible with each other. However, CAP urgently needs to combine these techniques to form a unified framework. In addition, these models needs to be learned and updated online with the extension of crowdsourced data and task types, thus requiring a unified architecture that integrates lifelong learning concepts and breaks down the barriers between different modules. This paper draws on the idea of ubiquitous operating systems and proposes a novel OS (CrowdOS), which is an abstract software layer running between native OS and application layer. In particular, based on an in-depth analysis of the complex crowd environment and diverse characteristics of heterogeneous tasks, we construct the OS kernel and three core frameworks including Task Resolution and Assignment Framework (TRAF), Integrated Resource Management (IRM), and Task Result quality Optimization (TRO). In addition, we validate the usability of CrowdOS, module correctness and development efficiency. Our evaluation further reveals TRO brings enormous improvement in efficiency and a reduction in energy consumption

    Protein 3D Graph Structure Learning for Robust Structure-based Protein Property Prediction

    Full text link
    Protein structure-based property prediction has emerged as a promising approach for various biological tasks, such as protein function prediction and sub-cellular location estimation. The existing methods highly rely on experimental protein structure data and fail in scenarios where these data are unavailable. Predicted protein structures from AI tools (e.g., AlphaFold2) were utilized as alternatives. However, we observed that current practices, which simply employ accurately predicted structures during inference, suffer from notable degradation in prediction accuracy. While similar phenomena have been extensively studied in general fields (e.g., Computer Vision) as model robustness, their impact on protein property prediction remains unexplored. In this paper, we first investigate the reason behind the performance decrease when utilizing predicted structures, attributing it to the structure embedding bias from the perspective of structure representation learning. To study this problem, we identify a Protein 3D Graph Structure Learning Problem for Robust Protein Property Prediction (PGSL-RP3), collect benchmark datasets, and present a protein Structure embedding Alignment Optimization framework (SAO) to mitigate the problem of structure embedding bias between the predicted and experimental protein structures. Extensive experiments have shown that our framework is model-agnostic and effective in improving the property prediction of both predicted structures and experimental structures. The benchmark datasets and codes will be released to benefit the community
    corecore