5 research outputs found

    Numerical study of response behaviors of natural gas hydrate reservoir around wellbore induced by water jet slotting

    Get PDF
    The trial production of natural gas hydrate reservoirs remains poor. Reasonable reservoir reconstruction, which can improve formation permeability, is an important approach to increasing the efficiency and enhancing production. In this work, water jet slotting is proposed to reconstruct an natural gas hydrate reservoir near a wellbore. The spatial slots formed by water jet slotting not only directly constitute high-permeability channels, but also generate disturbances to the surrounding in-situ sediment. Water jet slotting disturbances to nearby sediment was investigated using a three dimensional flow-structure coupling model to evaluate the proposed reconstruction method. The reservoir at the SH2 site in the Shenhu area of the South China Sea was used as the reference. A horizontal slotting arrangement along the vertical well was adopted. The results demonstrate that water jet slotting can change the primary stress state of the sediment around the wellbore, and generate a dominant stress relaxation zone and small stress concentration zone. Within the stress relaxation zone, the in-situ compressive stress was remarkably reduced or even transformed into tensile stress, accompanied by sediment displacement and volumetric expansion strain. This is conducive to loosening the sediment around the wellbore and improving the permeability characteristics. In addition, the influence of the water jet slotting parameters including slot radius, spacing, and number on disturbances to the nearby sediment was studied. Reservoir responses to water jet slotting under balanced and unbalanced bottom-hole pressures were compared and analyzed. This study provides a reference for natural gas hydrate reservoir reconstruction using water jet slotting. Cited as: Huang, M., Su, D., Zhao, Z., Wu, L., Fang B., Ning, F.  Numerical study of response behaviors of natural gas hydrate reservoir around wellbore induced by water jet slotting. Advances in Geo-Energy Research, 2023, 7(2): 75-89. https://doi.org/10.46690/ager.2023.02.0

    Restless Legs Syndrome in Chinese Patients With Sporadic Amyotrophic Lateral Sclerosis

    Get PDF
    Objective: To evaluate the frequency and clinical features of restless legs syndrome (RLS) in a group of Chinese patients with amyotrophic lateral sclerosis (ALS).Methods: 109 Patients included in this study fulfilled the revised El Escorial diagnostic criteria for clinically definite, probable and lab-supported probable ALS, and a group of 109 control subjects was matched for age and sex to the ALS group. Disease severity was assessed by the revised ALS functional rating scale (ALSFRS-R). The diagnosis of RLS was made according to the criteria of the International RLS Study Group. Other characteristics including sleep quality, excessive daytime sleepiness (EDS), REM sleep behavior disorder (RBD), depression and anxiety were also evaluated in ALS patients.Results: RLS was significantly more frequent in ALS patients than in control subjects (14.6 vs. 0.9%; P < 0.05). Compared to those without RLS, ALS patients with RLS reported a higher frequency of anxiety and EDS. ALS patients with RLS showed more severe legs dysfunction. EDS and legs function scores of the ALSFRS-R were independent factors significantly associated with RLS in ALS patients.Conclusions: Our findings suggest that Chinese ALS patients exhibit a high frequency of RLS symptoms and that these patients may benefit from recognition of the condition and optimized management of its symptoms. Moreover, ALS patients might cause circadian rhythms disturbance and our study further supports that ALS is a heterogeneous disorder involving multiple systems; further studies are needed to confirm these preliminary findings

    Numerical study of response behaviors of natural gas hydrate reservoir around wellbore induced by water jet slotting

    No full text
    The trial production of natural gas hydrate reservoirs remains poor. Reasonable reservoir reconstruction, which can improve formation permeability, is an important approach to increasing the efficiency and enhancing production. In this work, water jet slotting is proposed to reconstruct an natural gas hydrate reservoir near a wellbore. The spatial slots formed by water jet slotting not only directly constitute high-permeability channels, but also generate disturbances to the surrounding in-situ sediment. Water jet slotting disturbances to nearby sediment was investigated using a three dimensional flow-structure coupling model to evaluate the proposed reconstruction method. The reservoir at the SH2 site in the Shenhu area of the South China Sea was used as the reference. A horizontal slotting arrangement along the vertical well was adopted. The results demonstrate that water jet slotting can change the primary stress state of the sediment around the wellbore, and generate a dominant stress relaxation zone and small stress concentration zone. Within the stress relaxation zone, the in-situ compressive stress was remarkably reduced or even transformed into tensile stress, accompanied by sediment displacement and volumetric expansion strain. This is conducive to loosening the sediment around the wellbore and improving the permeability characteristics. In addition, the influence of the water jet slotting parameters including slot radius, spacing, and number on disturbances to the nearby sediment was studied. Reservoir responses to water jet slotting under balanced and unbalanced bottom-hole pressures were compared and analyzed. This study provides a reference for natural gas hydrate reservoir reconstruction using water jet slotting.</p

    Numerical study of response behaviors of natural gas hydrate reservoir around wellbore induced by water jet slotting

    No full text
    The trial production of natural gas hydrate reservoirs remains poor. Reasonable reservoir reconstruction, which can improve formation permeability, is an important approach to increasing the efficiency and enhancing production. In this work, water jet slotting is proposed to reconstruct an natural gas hydrate reservoir near a wellbore. The spatial slots formed by water jet slotting not only directly constitute high-permeability channels, but also generate disturbances to the surrounding in-situ sediment. Water jet slotting disturbances to nearby sediment was investigated using a three dimensional flow-structure coupling model to evaluate the proposed reconstruction method. The reservoir at the SH2 site in the Shenhu area of the South China Sea was used as the reference. A horizontal slotting arrangement along the vertical well was adopted. The results demonstrate that water jet slotting can change the primary stress state of the sediment around the wellbore, and generate a dominant stress relaxation zone and small stress concentration zone. Within the stress relaxation zone, the in-situ compressive stress was remarkably reduced or even transformed into tensile stress, accompanied by sediment displacement and volumetric expansion strain. This is conducive to loosening the sediment around the wellbore and improving the permeability characteristics. In addition, the influence of the water jet slotting parameters including slot radius, spacing, and number on disturbances to the nearby sediment was studied. Reservoir responses to water jet slotting under balanced and unbalanced bottom-hole pressures were compared and analyzed. This study provides a reference for natural gas hydrate reservoir reconstruction using water jet slotting.Engineering Thermodynamic
    corecore