118 research outputs found

    Line Profiles of Cores within Clusters. III. What is the most reliable tracer of core collapse in dense clusters?

    Full text link
    Recent observational and theoretical investigations have emphasised the importance of filamentary networks within molecular clouds as sites of star formation. Since such environments are more complex than those of isolated cores, it is essential to understand how the observed line profiles from collapsing cores with non-spherical geometry are affected by filaments. In this study, we investigate line profile asymmetries by performing radiative transfer calculations on hydrodynamic models of three collapsing cores that are embedded in filaments. We compare the results to those that are expected for isolated cores. We model the five lowest rotational transition line (J = 1-0, 2-1, 3-2, 4-3, and 5-4) of both optically thick (HCN, HCO+^+) as well as optically thin (N2_2H+^+, H13^{13}CO+^+) molecules using constant abundance laws. We find that less than 50% of simulated (1-0) transition lines show blue infall asymmetries due to obscuration by the surrounding filament. However, the fraction of collapsing cores that have a blue asymmetric emission line profile rises to 90% when observed in the (4-3) transition. Since the densest gas towards the collapsing core can excite higher rotational states, upper level transitions are more likely to produce blue asymmetric emission profiles. We conclude that even in irregular, embedded cores one can trace infalling gas motions with blue asymmetric line profiles of optically thick lines by observing higher transitions. The best tracer of collapse motions of our sample is the (4-3) transition of HCN, but the (3-2) and (5-4) transitions of both HCN and HCO+^+ are also good tracers.Comment: accepted by MNRAS; 13 pages, 16 figures, 6 table

    The Nature of the Variable Galactic Center Source IRS16SW

    Full text link
    We report measurements of the light curve of the variable Galactic Center source IRS16SW. The light curve is not consistent with an eclipsing binary or any other obvious variable star. The source may be an example of a high mass variable predicted theoretically but not observed previously.Comment: 11 pages, 2 figures. Accepted by Ap

    Dust SEDs in the era of Herschel and Planck: a Hierarchical Bayesian fitting technique

    Full text link
    We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources the dust SED as represented by a power--law modified black body is subject to a strong degeneracy between T and the spectral index beta. The traditional non-hierarchical approaches, typically based on chi-square minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and beta even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the chi-square fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and sub millimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and beta are weakly positively correlated -- in contradiction with the chi-square fits, which indicate a T-beta anti-correlation from the same data-set. Additionally, in comparison to the chi-square fits the Bayesian SED parameter estimates exhibit a reduced range in values.Comment: 20 pages, 9 figures, ApJ format, revised version matches ApJ-accepted versio

    Fast deuterium fractionation in magnetized and turbulent filaments

    Get PDF
    Deuterium fractionation is considered as an important process to infer the chemical ages of prestellar cores in filaments. We present here the first magneto-hydrodynamical simulations including a chemical network to study deuterium fractionation in magnetized and turbulent filaments and their substructures. The filaments typically show widespread deuterium fractionation with average values ≳0.01\gtrsim0.01. For individual cores of similar age, we observe the deuteration fraction to increase with time, but also to be independent of their average properties such as density, virial or mass-to-magnetic flux ratio. We further find a correlation of the deuteration fraction with core mass, average H2_2 density and virial parameter only at late evolutionary stages of the filament and attribute this to the lifetime of the individual cores. Specifically, chemically old cores reveal higher deuteration fractions. Within the radial profiles of selected cores, we notice differences in the structure of the deuteration fraction or surface density, which we can attribute to their different turbulent properties. High deuteration fractions of the order 0.01−0.10.01-0.1 may be reached within approximately 200200~kyrs, corresponding to two free-fall times, as defined for cylindrical systems, of the filamentsComment: submitted to MNRAS. Comments welcom
    • …
    corecore