5 research outputs found

    Data in support of quantification of pyrophosphate as a universal approach to determine polymerase activity and assay polymerase inhibitors

    Get PDF
    Characterization of synthetic oligonucleotides and quantification of primer extension mediated by a human translesion synthesis polymerase η (Pol η) over drug-induced DNA lesions in the presence on modified nucleotide analogs is described. Extent of primer extension for each reaction was monitored by denaturing gel electrophoresis. The data was obtained to assess the performance of the fluorescence-based primer extension (PE-PiPer) assay [1] with respect to the established and conventionally used denaturing gel electrophoresis. The obtained data reflects the specific inhibition of translesion synthesis over cisplatin containing DNA with 5-OH-CTP

    Gut microbial transformation of the dietary mutagen MeIQx may reduce exposure levels without altering intestinal transport

    No full text
    The mutagen and probable human carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is metabolized in the colon to 9-hydroxyl-2,7-dimethyl-7,9,10,11-tetrahydropyrimido[2′,1′:2,3]imidazo[4,5-f]quinoxaline (MeIQx-M1) by conjugation with microbially generated acrolein. However, whether this microbiota-controlled process alters systemic exposure and hepatotoxicity of MeIQx remains unclear. The physiological relevance of this microbial transformation on the systemic exposure of MeIQx was investigated using an in vitro-in vivo extrapolation approach. To address whether microbial transformation influences intestinal transport of MeIQx, the intestinal uptake of MeIQx and its metabolite MeIQx-M1 was quantified using Ussing chambers mounted with different intestinal segments from male Fischer 344 rats. Up to 0.4% of both MeIQx and MeIQx-M1 were transported from the mucosal side to the serosal side of intestinal tissue within 90 min, suggesting that the intestinal uptake of both compounds is similar. With the uptake rates of both compounds, physiologically based pharmacokinetic (PBPK) modeling of the fate of MeIQx in the human body including microbial transformation of MeIQx was performed. Results indicate for the first time that high levels of microbe-derived acrolein would be required to significantly reduce systemic exposure of MeIQx in humans. Finally, neither MeIQx nor MeIQx-M1 were cytotoxic towards human liver HepaRG cells at dietary or higher concentrations of MeIQx. In summary, these findings suggest that gut microbial transformation of heterocyclic amines has the potential to influence systemic human exposure to some extent, but may require significant gut microbial production of acrolein and that further investigations are needed to understand physiological levels of acrolein and competing biotransformation pathways

    Biology of Tobacco and Smoking

    No full text

    Frontiers of Mass Spectrometry in Nucleic Acids Analysis

    No full text

    Medulloblastoma, Primitive Neuroectodermal Tumors, and Pineal Tumors

    No full text
    corecore