175 research outputs found
How have advances in genetic technology modified movement disorder nosology?
The role of genetics and its technological development have been fundamental in advancing the field of movement disorders, opening the door to precision medicine. Starting from the revolutionary discovery of the locus of the Huntington’s disease gene, we review the milestones of genetic discoveries in movement disorders and their impact on clinical practice and research efforts. Before the 1980s, early techniques did not allow the identification of genetic alteration in complex diseases. Further advances increasingly defined a large number of pathogenic genetic alterations. Moreover, these techniques allowed epigenomic, transcriptomic and microbiome analyses. In the 2020s, these new technologies are poised to displace phenotype-based classifications towards a nosology based on genetic/biological data. Advances in genetic technologies are engineering a reversal of the phenotype-to-genotype order of nosology development, replacing convergent clinicopathological disease models with the genotypic divergence required for future precision medicine applications.Fil: Sturchio, A.. University of Cincinnati; Estados UnidosFil: Marsili, L.. University of Cincinnati; Estados UnidosFil: Mahajan, A.. University of Cincinnati; Estados UnidosFil: Grimberg, M.B.. University of Cincinnati; Estados UnidosFil: Kauffman, Marcelo Andres. Universidad Austral. Facultad de Ciencias BiomĂ©dicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Espay, A.J.. University of Cincinnati; Estados Unido
Submarine Groundwater Discharge Data at Meter Scale (223Ra, 224Ra, 226Ra, 228Ra and 222Rn) in Indian River Bay (Delaware, US)
Abstract Submarine groundwater discharge (SGD) was sampled at high-spatial resolution in Indian River Bay, DE, USA, in July 2016 to characterize the spatial variability of the activity of the radium and radon isotopes commonly used to estimate SGD. These data were part of an investigation into the methods and challenges of characterizing SGD rates and variability, especially in the coastal aquifer transition from freshwater to saltwater (Hydrogeological processes and near shore spatial variability of radium and radon isotopes for the characterization of submarine groundwater discharge (Duque et al., 2019)). Samples were collected with seepage meters and minipiezometers to obtain sufficient volumes for analytical characterization. Seepage meter samples (for 223Ra, 224Ra, 226Ra, and 228Ra) were collected at two-hour intervals over a semi-diurnal tidal cycle from 30 seepage meters. Samples for 222Rn characterization were collected with a minipiezometer from 25 cm below the bay bed at each seepage meter location. All samples were analyzed with standard and state of the art procedures
Plasma NfL, clinical subtypes and motor progression in Parkinson's disease.
INTRODUCTION: neurofilament light chain (NfL) levels have been proposed as reliable biomarkers of neurodegeneration in Parkinson's disease (PD) but the relationship between plasma NfL, clinical subtypes of PD and motor progression is still debated. METHODS: plasma NfL concentration was measured in 45 healthy controls and consecutive 92 PD patients who underwent an extensive motor and non-motor assessment at baseline and after 2 years of follow-up. PD malignant phenotype was defined as the combination of at least two out of cognitive impairment, orthostatic hypotension and REM sleep behavior disorder. PD patients were divided according to the age-adjusted cut-offs of plasma NfL levels into high and normal NfL (H-NfL and N-NfL, respectively). A multivariable linear regression model was used to assess the value of plasma NfL as predictor of 2-years progression in PD. RESULTS: NfL was higher in PD patients than in controls (p = 0.037). H-NfL (n = 16) group exhibited more severe motor and non-motor symptoms, higher prevalence of malignant phenotype and worse motor progression (MDS-UPDRS-III 11.3 vs 0.7 points, p = 0.003) compared to N-NfL group (n = 76). In linear regression analyses plasma NfL emerged as the best predictor of 2-year motor progression compared to age, sex, disease duration, baseline motor/non-motor variables. CONCLUSION: increased plasma NfL concentration is associated with malignant PD phenotype and faster motor progression. These findings support the role of NfL assessment as a useful measure for stratifying patients with different baseline slopes of decline in future clinical trials of putative disease-modifying treatments
Ar-39 Detection at the 10^-16 Isotopic Abundance Level with Atom Trap Trace Analysis
Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, has been
applied to analyze atmospheric Ar-39 (half-life = 269 yr), a cosmogenic isotope
with an isotopic abundance of 8x10^-16. In addition to the superior selectivity
demonstrated in this work, counting rate and efficiency of ATTA have been
improved by two orders of magnitude over prior results. Significant
applications of this new analytical capability lie in radioisotope dating of
ice and water samples and in the development of dark matter detectors
Ar39 Detection at the 10\u3csup\u3e-\u3c/sup\u3e16 Isotopic Abundance Level with Atom Trap Trace Analysis
Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric Ar39 (half-life=269yr), a cosmogenic isotope with an isotopic abundance of 8×10-16. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors. © 2011 American Physical Society
The brief international cognitive assessment for multiple sclerosis (BICAMS): Normative values with gender, age and education corrections in the Italian population
Background: BICAMS (Brief International Cognitive Assessment for Multiple Sclerosis) has been recently developed as brief, practical and universal assessment tool for cognitive impairment in MS subjects. It includes the Symbol Digit Modalities Test (SDMT), the California Verbal Learning Test-2 (CVLT2) and the Brief Visuospatial Memory Test-Revised (BVMT-R) . In this study we aimed at gathering regression based normative data for the BICAMS battery in the Italian population.Methods: Healthy subjects were consecutively recruited among patient friends and relatives. Corrections for demographics were calculated using multivariable linear regression models. Test-retest reliability was assessed using the Pearson correlation coefficient.Results: The BICAMS battery was administered to 273 healthy subjects (180 women, mean age 38.9 ± 13.0 years, mean education 14.9 ± 3.0 years). Test-retest reliability was good for all the tests.Conclusions: The study provided normative data of the BICAMS for the Italian population confirming good test-retest reliability which can facilitate the use of the battery in clinical practice, also for longitudinal patient assessments
Differential response to pallidal deep brain stimulation among monogenic dystonias: systematic review and meta-analysis
ObjectiveGenetic subtypes of dystonia may respond differentially to deep brain stimulation of the globus pallidus pars interna (GPi DBS). We sought to compare GPi DBS outcomes among the most common monogenic dystonias.MethodsThis systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses and Meta-analysis of Observational Studies in Epidemiology guidelines. We searched PubMed for studies on genetically confirmed monogenic dystonia treated with GPi DBS documenting pre-surgical and post-surgical assessments using the Burke-Fahn-Marsden Dystonia Rating Scale Motor Score (BFMMS) and Burke-Fahn-Marsden Disability Score (BFMDS). We performed (i) meta-analysis for each gene mutation; (ii) weighted ordinary linear regression analyses to compare BFMMS and BFMDS outcomes between DYT-TOR1A and other monogenic dystonias, adjusting for age and disease duration and (iii) weighted linear regression analysis to estimate the effect of age, sex and disease duration on GPi DBS outcomes. Results were summarised with mean change and 95% CI.ResultsDYT-TOR1A (68%, 38.4 points; p<0.001), DYT-THAP1 (37% 14.5 points; p<0.001) and NBIA/DYT-PANK2 (27%, 21.4 points; p<0.001) improved in BFMMS; only DYT-TOR1A improved in BFMDS (69%, 9.7 points; p<0.001). Improvement in DYT-TOR1A was significantly greater than in DYT-THAP1 (BFMMS -31%), NBIA/DYT-PANK2 (BFMMS -35%; BFMDS -53%) and CHOR/DYT-ADCY5 (BFMMS -36%; BFMDS -42%). Worse motor outcomes were associated with longer dystonia duration and older age at dystonia onset in DYT-TOR1A, longer dystonia duration in DYT/PARK-TAF1 and younger age at dystonia onset in DYT-SGCE.ConclusionsGPi DBS outcomes vary across monogenic dystonias. These data serve to inform patient selection and prognostic counselling
Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments
Natural perchlorate (ClO4-) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4- compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4- in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4- to the more well-studied atmospherically deposited anions NO3- and Cl- as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4- is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10-1 to 106 µg/kg. Generally, the ClO4- concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3- and ClO4- co-occur at molar ratios (NO3-/ClO4-) that vary between ~104 and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4- reduction, as indicated in part by NO3- isotope data. In contrast, much larger ranges of Cl-/ClO4- and Cl-/NO3- ratios indicate Cl- varies independently from both ClO4- and NO3-. The general lack of correlation between Cl- and ClO4- or NO3- implies that Cl- is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3-/ClO4- molar ratio ~103. The relative enrichment in ClO4- compared to Cl- or NO3- and unique isotopic composition of Atacama ClO4- may reflect either additional in-situ production mechanism(s) or higher relative atmospheric production rates in that specific region or in the geological past. Elevated concentrations of ClO4- reported on the surface of Mars, and its enrichment with respect to Cl- and NO3-, could reveal important clues regarding the climatic, hydrologic, and potentially biologic evolution of that planet. Given the highly conserved ratio of NO3-/ClO4- in non-biologically active areas on Earth, it may be possible to use alterations of this ratio as a biomarker on Mars and for interpreting major anion cycles and processes on both Mars and Earth, particularly with respect to the less-conserved NO3- pool terrestrially
Recommended from our members
Chlorine-36 abundance in natural and synthetic perchlorate
Perchlorate (ClO{sub 4}{sup -}) is ubiquitous in the environment. It occurs naturally as a product of atmospheric photochemical reactions, and is synthesized for military, aerospace, and industrial applications. Nitrate-enriched soils of the Atacama Desert (Chile) contain high concentrations of natural ClO{sub 4}{sup -}; nitrate produced from these soils has been exported worldwide since the mid-1800's for use in agriculture. The widespread introduction of synthetic and agricultural ClO{sub 4}{sup -} into the environment has complicated attempts to understand the geochemical cycle of ClO{sub 4}{sup -}. Natural ClO{sub 4}{sup -} samples from the southwestern United States have relatively high {sup 36}Cl abundances ({sup 36}Cl/Cl = 3,100 x 10{sup -15} to 28,800 x 10{sup -15}), compared with samples of synthetic ({sup 36}Cl/Cl = 0.0 x 10{sup -15} to 40 x 10{sup -15}) and Atacama Desert ({sup 36}Cl/Cl = 0.9 x 10{sup -15} to 590 x 10{sup -15}) ClO{sub 4}{sup -}. These data give a lower limit for the initial {sup 36}Cl abundance of natural ClO{sub 4}{sup -} and provide temporal and other constraints on its geochemical cycle
- …