910 research outputs found
Competing Interactions among Supramolecular Structures on Surfaces
A simple model was constructed to describe the polar ordering of
non-centrosymmetric supramolecular aggregates formed by self assembling
triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice
with an Ising-like penalty associated with reversing the orientation of nearest
neighbor dipoles. The choice of the potentials is based on experimental results
and structural features of the supramolecular objects. For films of finite
thickness, we find a periodic structure along an arbitrary direction
perpendicular to the substrate normal, where the repeat unit is composed of two
equal width domains with dipole up and dipole down configuration. When a short
range interaction between the surface and the dipoles is included the balance
between the up and down dipole domains is broken. Our results suggest that due
to surface effects, films of finite thickness have a none zero macroscopic
polarization, and that the polarization per unit volume appears to be a
function of film thickness.Comment: 3 pages, 3 eps figure
Recommended from our members
Biomolecular Materials. Report of the January 13-15, 2002 Workshop
Twenty-two scientists from around the nation and the world met to discuss the way that the molecules, structures, processes and concepts of the biological world could be used or mimicked in designing novel materials, processes or devices of potential practical significance. The emphasis was on basic research, although the long-term goal is, in addition to increased knowledge, the development of applications to further the mission of the Department of Energy
Anderson transition in the three dimensional symplectic universality class
We study the Anderson transition in the SU(2) model and the Ando model. We
report a new precise estimate of the critical exponent for the symplectic
universality class of the Anderson transition. We also report numerical
estimation of the function.Comment: 4 pages, 5 figure
Synergistic regulation of cerebellar Purkinje neuron development by laminin epitopes and collagen on an artificial hybrid matrix construct
Cataloged from PDF version of article.The extracellular matrix (ECM) creates a dynamic environment around the cells in the developing central nervous system, providing them with the necessary biochemical and biophysical signals. Although the functions of many ECM molecules in neuronal development have been individually studied in detail, the combinatorial effects of multiple ECM components are not well characterized. Here we demonstrate that the expression of collagen and laminin-1 (lam-1) are spatially and temporally correlated during embryonic and post-natal development of the cerebellum. These changes in ECM distribution correspond to specific stages of Purkinje neuron (PC) migration, somatic monolayer formation and polarization. To clarify the respective roles of these ECM molecules on PC development, we cultured cerebellar neurons on a hybrid matrix comprised of collagen and a synthetic peptide amphiphile nanofiber bearing a potent lam-1 derived bioactive IKVAV peptide epitope. By systematically varying the concentration and ratio of collagen and the laminin epitope in the matrix, we could demonstrate a synergistic relationship between these two ECM components in controlling multiple aspects of PC maturation. An optimal ratio of collagen and IKVAV in the matrix was found to promote maximal PC survival and dendrite growth, while dendrite penetration into the matrix was enhanced by a high IKVAV to collagen ratio. In addition, the laminin epitope was found to guide PC axon development. By combining our observations in vivo and in vitro, we propose a model of PC development where the synergistic effects of collagen and lam-1 play a key role in migration, polarization and morphological maturation of PCs. This journal is © the Partner Organisations 2014
Does a magnetic field modify the critical behaviour at the metal-insulator transition in 3-dimensional disordered systems?
The critical behaviour of 3-dimensional disordered systems with magnetic
field is investigated by analyzing the spectral fluctuations of the energy
spectrum. We show that in the thermodynamic limit we have two different
regimes, one for the metallic side and one for the insulating side with
different level statistics. The third statistics which occurs only exactly at
the critical point is {\it independent} of the magnetic field. The critical
behaviour which is determined by the symmetry of the system {\it at} the
critical point should therefore be independent of the magnetic field.Comment: 10 pages, Revtex, 4 PostScript figures in uuencoded compressed tar
file are appende
Absence of non-linear Meissner effect in YBa2Cu3O6.95
We present measurements the field and temperature dependence of the
penetration depth (lambda) in high purity, untwinned single crystals of
YBa2Cu3O6.95 in all three crystallographic directions. The temperature
dependence of lambda is linear down to low temperatures, showing that our
crystals are extremely clean. Both the magnitude and temperature dependence of
the field dependent correction to lambda however, are considerably different
from that predicted from the theory of the non-linear Meissner effect for a
d-wave superconductor (Yip-Sauls theory). Our results suggest that the
Yip-Sauls effect is either absent or is unobservably small in the Meissner
state of YBa2Cu3O6.95.Comment: 4 pages, 4 figures (Latex file + Postscipt figures
The non-centrosymmetric lamellar phase in blends of ABC triblock and ac diblock copolymers
The phase behaviour of blends of ABC triblock and ac diblock copolymers is
examined using self-consistent field theory. Several equilibrium lamellar
structures are observed, depending on the volume fraction of the diblocks,
phi_2, the monomer interactions, and the degrees of polymerization of the
copolymers. For segregations just above the order-disorder transition the
triblocks and diblocks mix together to form centrosymmetric lamellae. As the
segregation is increased the triblocks and diblocks spatially separate either
by macrophase-separating, or by forming a non-centrosymmetric (NCS) phase of
alternating layers of triblock and diblock (...ABCcaABCca...). The NCS phase is
stable over a narrow region near phi_2=0.4. This region is widest near the
critical point on the phase coexistence curve and narrows to terminate at a
triple point at higher segregation. Above the triple point there is two-phase
coexistence between almost pure triblock and diblock phases. The theoretical
phase diagram is consistent with experiments.Comment: 9 pages, 8 figures, submitted to Macromolecule
Evidence for Surface Andreev Bound states in Cuprate Superconductors from Penetration Depth Measurements
Tunneling and theoretical studies have suggested that Andreev bound states
form at certain surfaces of unconventional superconductors. Through studies of
the temperature and field dependence of the in-plane magnetic penetration depth
lambda_ab at low temperature, we have found strong evidence for the presence of
these states in clean single crystal YBCO and BSCCO. Crystals cut to expose a
[110] interface show a strong upturn in lambda_ab at around 7K, when the field
is oriented so that the supercurrents flow around this surface. In YBCO this
upturn is completely suppressed by a field of ~0.1 T.Comment: 4 pages 2 column revtex + 4 postscript figures. Submitted to PR
Conductivity of Metallic Si:B near the Metal-Insulator Transition: Comparison between Unstressed and Uniaxially Stressed Samples
The low-temperature dc conductivities of barely metallic samples of p-type
Si:B are compared for a series of samples with different dopant concentrations,
n, in the absence of stress (cubic symmetry), and for a single sample driven
from the metallic into the insulating phase by uniaxial compression, S. For all
values of temperature and stress, the conductivity of the stressed sample
collapses onto a single universal scaling curve. The scaling fit indicates that
the conductivity of si:B is proportional to the square-root of T in the
critical range. Our data yield a critical conductivity exponent of 1.6,
considerably larger than the value reported in earlier experiments where the
transition was crossed by varying the dopant concentration. The larger exponent
is based on data in a narrow range of stress near the critical value within
which scaling holds. We show explicitly that the temperature dependences of the
conductivity of stressed and unstressed Si:B are different, suggesting that a
direct comparison of the critical behavior and critical exponents for stress-
tuned and concentration-tuned transitions may not be warranted
Scaling of the Conductivity with Temperature and Uniaxial Stress in Si:B at the Metal-Insulator Transition
Using uniaxial stress to tune Si:B through the metal-insulator transition we
find the conductivity at low temperatures shows an excellent fit to scaling
with temperature and stress on both sides of the transition. The scaling
functions yield the conductivity in the metallic and insulating phases, and
allow a reliable determination of the temperature dependence in the critical
regions on both sides of the transition
- …