182 research outputs found

    Haplotype analysis of the internationally distributed BRCA1 c.3331_3334delCAAG founder mutation reveals a common ancestral origin in Iberia

    Get PDF
    BACKGROUND: The BRCA1 c.3331_3334delCAAG founder mutation has been reported in hereditary breast and ovarian cancer families from multiple Hispanic groups. We aimed to evaluate BRCA1 c.3331_3334delCAAG haplotype diversity in cases of European, African, and Latin American ancestry. METHODS: BC mutation carrier cases from Colombia (n = 32), Spain (n = 13), Portugal (n = 2), Chile (n = 10), Africa (n = 1), and Brazil (n = 2) were genotyped with the genome-wide single nucleotide polymorphism (SNP) arrays to evaluate haplotype diversity around BRCA1 c.3331_3334delCAAG. Additional Portuguese (n = 13) and Brazilian (n = 18) BC mutation carriers were genotyped for 15 informative SNPs surrounding BRCA1. Data were phased using SHAPEIT2, and identical by descent regions were determined using BEAGLE and GERMLINE. DMLE+ was used to date the mutation in Colombia and Iberia. RESULTS: The haplotype reconstruction revealed a shared 264.4-kb region among carriers from all six countries. The estimated mutation age was ~ 100 generations in Iberia and that it was introduced to South America early during the European colonization period. CONCLUSIONS: Our results suggest that this mutation originated in Iberia and later introduced to Colombia and South America at the time of Spanish colonization during the early 1500s. We also found that the Colombian mutation carriers had higher European ancestry, at the BRCA1 gene harboring chromosome 17, than controls, which further supported the European origin of the mutation. Understanding founder mutations in diverse populations has implications in implementing cost-effective, ancestry-informed screening

    The Assembly of Individual Chaplin Peptides from Streptomyces coelicolor into Functional Amyloid Fibrils

    Get PDF
    The self-association of proteins into amyloid fibrils offers an alternative to the natively folded state of many polypeptides. Although commonly associated with disease, amyloid fibrils represent the natural functional state of some proteins, such as the chaplins from the soil-dwelling bacterium Streptomyces coelicolor, which coat the aerial mycelium and spores rendering them hydrophobic. We have undertaken a biophysical characterisation of the five short chaplin peptides ChpD-H to probe the mechanism by which these peptides self-assemble in solution to form fibrils. Each of the five chaplin peptides produced synthetically or isolated from the cell wall is individually surface-active and capable of forming fibrils under a range of solution conditions in vitro. These fibrils contain a highly similar cross-Ξ² core structure and a secondary structure that resembles fibrils formed in vivo on the spore and mycelium surface. They can also restore the growth of aerial hyphae to a chaplin mutant strain. We show that cysteine residues are not required for fibril formation in vitro and propose a role for the cysteine residues conserved in four of the five short chaplin peptides

    Novel Druggable Hot Spots in Avian Influenza Neuraminidase H5N1 Revealed by Computational Solvent Mapping of a Reduced and Representative Receptor Ensemble

    Get PDF
    The influenza virus subtype H5N1 has raised concerns of a possible human pandemic threat because of its high virulence and mutation rate. Although several approved anti-influenza drugs effectively target the neuraminidase, some strains have already acquired resistance to the currently available anti-influenza drugs. In this study, we present the synergistic application of extended explicit solvent molecular dynamics (MD) and computational solvent mapping (CS-Map) to identify putative β€˜hot spots’ within flexible binding regions of N1 neuraminidase. Using representative conformations of the N1 binding region extracted from a clustering analysis of four concatenated 40-ns MD simulations, CS-Map was utilized to assess the ability of small, solvent-sized molecules to bind within close proximity to the sialic acid binding region. Mapping analyses of the dominant MD conformations reveal the presence of additional hot spot regions in the 150- and 430-loop regions. Our hot spot analysis provides further support for the feasibility of developing high-affinity inhibitors capable of binding these regions, which appear to be unique to the N1 strain

    Protein Structure along the Order–Disorder Continuum

    Get PDF
    Thermal fluctuations cause proteins to adopt an ensemble of conformations wherein the relative stability of the different ensemble members is determined by the topography of the underlying energy landscape. β€œFolded” proteins have relatively homogeneous ensembles, while β€œunfolded” proteins have heterogeneous ensembles. Hence, the labels β€œfolded” and β€œunfolded” represent attempts to provide a qualitative characterization of the extent of structural heterogeneity within the underlying ensemble. In this work, we introduce an information-theoretic order parameter to quantify this conformational heterogeneity. We demonstrate that this order parameter can be estimated in a straightforward manner from an ensemble and is applicable to both unfolded and folded proteins. In addition, a simple formula for approximating the order parameter directly from crystallographic B factors is presented. By applying these metrics to a large sample of proteins, we show that proteins span the full range of the order–disorder axis.National Institutes of Health (U.S.) (NIH Grant 5R21NS063185-02

    Atomic-Level Characterization of the Activation Mechanism of SERCA by Calcium

    Get PDF
    We have performed molecular dynamics (MD) simulations to elucidate, in atomic detail, the mechanism by which the sarcoplasmic reticulum Ca2+-ATPase (SERCA) is activated by Ca2+. Crystal structures suggest that activation of SERCA occurs when the cytoplasmic head-piece, in an open (E1) conformation stabilized by Ca2+, undergoes a large-scale open-to-closed (E1 to E2) transition that is induced by ATP binding. However, spectroscopic measurements in solution suggest that these structural states (E1 and E2) are not tightly coupled to biochemical states (defined by bound ligands); the closed E2 state predominates even in the absence of ATP, in both the presence and absence of Ca2+. How is this loose coupling consistent with the high efficiency of energy transduction in the Ca2+-ATPase? To provide insight into this question, we performed long (500 ns) all-atom MD simulations starting from the open crystal structure, including a lipid bilayer and water. In both the presence and absence of Ca2+, we observed a large-scale open-to-closed conformational transition within 400 ns, supporting the weak coupling between structural and biochemical states. However, upon closer inspection, it is clear that Ca2+ is necessary and sufficient for SERCA to reach the precise geometrical arrangement necessary for activation of ATP hydrolysis. Contrary to suggestions from crystal structures, but in agreement with solution spectroscopy, the presence of ATP is not required for this activating transition. Principal component analysis showed that Ca2+ reshapes the free energy landscape of SERCA to create a path between the open conformation and the activated closed conformation. Thus the malleability of the free energy landscape is essential for SERCA efficiency, ensuring that ATP hydrolysis is tightly coupled to Ca2+ transport. These results demonstrate the importance of real-time dynamics in the formation of catalytically competent conformations of SERCA, with broad implications for understanding enzymatic catalysis in atomic detail

    Modeling Intrinsically Disordered Proteins with Bayesian Statistics

    Get PDF
    The characterization of intrinsically disordered proteins is challenging because accurate models of these systems require a description of both their thermally accessible conformers and the associated relative stabilities or weights. These structures and weights are typically chosen such that calculated ensemble averages agree with some set of prespecified experimental measurements; however, the large number of degrees of freedom in these systems typically leads to multiple conformational ensembles that are degenerate with respect to any given set of experimental observables. In this work we demonstrate that estimates of the relative stabilities of conformers within an ensemble are often incorrect when one does not account for the underlying uncertainty in the estimates themselves. Therefore, we present a method for modeling the conformational properties of disordered proteins that estimates the uncertainty in the weights of each conformer. The Bayesian weighting (BW) formalism incorporates information from both experimental data and theoretical predictions to calculate a probability density over all possible ways of weighting the conformers in the ensemble. This probability density is then used to estimate the values of the weights. A unique and powerful feature of the approach is that it provides a built-in error measure that allows one to assess the accuracy of the ensemble. We validate the approach using reference ensembles constructed from the five-residue peptide met-enkephalin and then apply the BW method to construct an ensemble of the K18 isoform of the tau protein. Using this ensemble, we indentify a specific pattern of long-range contacts in K18 that correlates with the known aggregation properties of the sequence.National Institutes of Health (U.S.) (NIH Grant 5R21NS063185-02

    The Energy Computation Paradox and ab initio Protein Folding

    Get PDF
    The routine prediction of three-dimensional protein structure from sequence remains a challenge in computational biochemistry. It has been intuited that calculated energies from physics-based scoring functions are able to distinguish native from nonnative folds based on previous performance with small proteins and that conformational sampling is the fundamental bottleneck to successful folding. We demonstrate that as protein size increases, errors in the computed energies become a significant problem. We show, by using error probability density functions, that physics-based scores contain significant systematic and random errors relative to accurate reference energies. These errors propagate throughout an entire protein and distort its energy landscape to such an extent that modern scoring functions should have little chance of success in finding the free energy minima of large proteins. Nonetheless, by understanding errors in physics-based score functions, they can be reduced in a post-hoc manner, improving accuracy in energy computation and fold discrimination

    Molecular Dynamics Analysis Reveals Structural Insights into Mechanism of Nicotine N-Demethylation Catalyzed by Tobacco Cytochrome P450 Mono-Oxygenase

    Get PDF
    CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys–trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase

    The use of herbal medicines during breastfeeding: A population-based survey in Western Australia

    Get PDF
    Background: Main concerns for lactating women about medications include the safety of their breastfed infants and the potential effects of medication on quantity and quality of breast milk. While medicine treatments include conventional and complementary medicines, most studies to date have focused on evaluating the safety aspect of conventional medicines. Despite increasing popularity of herbal medicines, there are currently limited data available on the pattern of use and safety of these medicines during breastfeeding. This study aimed to identify the pattern of use of herbal medicines during breastfeeding in Perth, Western Australia, and to identify aspects which require further clinical research. Methods: This study was conducted using a self-administered questionnaire validated through two pilot studies. Participants were 18 years or older, breastfeeding or had breastfed in the past 12 months. Participants were recruited from various community and health centres, and through advertising in newspapers. Simple descriptive statistics were used to summarise the demographic profile and attitudes of respondents, using the SPSS statistical software. Results: A total of 304 questionnaires from eligible participants were returned (27.2% response rate) and analysed. Amongst the respondents, 59.9% took at least one herb for medicinal purposes during breastfeeding, whilst 24.3% reported the use of at least one herb to increase breast milk supply. Most commonly used herbs were fenugreek (18.4%), ginger (11.8%), dong quai (7.9%), chamomile (7.2%), garlic (6.6%) and blessed thistle (5.9%). The majority of participants (70.1%) believed that there was a lack of information resources, whilst 43.4% perceived herbal medicines to be safer than conventional medicines. Only 28.6% of users notified their doctor of their decision to use herbal medicine (s) during breastfeeding; 71.6% had previously refused or avoided conventional medicine treatments due to concerns regarding safety of their breastfed infants. Conclusions: The use of herbal medicines is common amongst breastfeeding women, while information supporting their safety and efficacy is lacking. This study has demonstrated the need for further research into commonly used herbal medicines. Evidence-based information should be available to breastfeeding women who wish to consider use of all medicines, including complementary medicines, to avoid unnecessary cessation of breastfeeding or compromising of pharmacotherapy
    • …
    corecore