3,330 research outputs found
Temporal Justification Logic
Justification logics are modal-like logics with the additional capability of recording the reason, or justification, for modalities in syntactic structures, called justification terms. Justification logics can be seen as explicit counterparts to modal logics. The behavior and interaction of agents in distributed system is often modeled using logics of knowledge and time. In this paper, we sketch some preliminary ideas on how the modal knowledge part of such logics of knowledge and time could be replaced with an appropriate justification logic
An Estimation and Analysis Framework for the Rasch Model
The Rasch model is widely used for item response analysis in applications
ranging from recommender systems to psychology, education, and finance. While a
number of estimators have been proposed for the Rasch model over the last
decades, the available analytical performance guarantees are mostly asymptotic.
This paper provides a framework that relies on a novel linear minimum
mean-squared error (L-MMSE) estimator which enables an exact, nonasymptotic,
and closed-form analysis of the parameter estimation error under the Rasch
model. The proposed framework provides guidelines on the number of items and
responses required to attain low estimation errors in tests or surveys. We
furthermore demonstrate its efficacy on a number of real-world collaborative
filtering datasets, which reveals that the proposed L-MMSE estimator performs
on par with state-of-the-art nonlinear estimators in terms of predictive
performance.Comment: To be presented at ICML 201
Analyzing and Visualizing State Sequences in R with TraMineR
This article describes the many capabilities offered by the TraMineR toolbox for categorical sequence data. It focuses more specifically on the analysis and rendering of state sequences. Addressed features include the description of sets of sequences by means of transversal aggregated views, the computation of longitudinal characteristics of individual sequences and the measure of pairwise dissimilarities. Special emphasis is put on the multiple ways of visualizing sequences. The core element of the package is the state se- quence object in which we store the set of sequences together with attributes such as the alphabet, state labels and the color palette. The functions can then easily retrieve this information to ensure presentation homogeneity across all printed and graphical displays. The article also demonstrates how TraMineRâÂÂs outcomes give access to advanced analyses such as clustering and statistical modeling of sequence data.
- …