524 research outputs found
High rate, long-distance quantum key distribution over 250km of ultra low loss fibres
We present a fully automated quantum key distribution prototype running at
625 MHz clock rate. Taking advantage of ultra low loss fibres and low-noise
superconducting detectors, we can distribute 6,000 secret bits per second over
100 km and 15 bits per second over 250km
Hacking commercial quantum cryptography systems by tailored bright illumination
The peculiar properties of quantum mechanics allow two remote parties to
communicate a private, secret key, which is protected from eavesdropping by the
laws of physics. So-called quantum key distribution (QKD) implementations
always rely on detectors to measure the relevant quantum property of single
photons. Here we demonstrate experimentally that the detectors in two
commercially available QKD systems can be fully remote-controlled using
specially tailored bright illumination. This makes it possible to tracelessly
acquire the full secret key; we propose an eavesdropping apparatus built of
off-the-shelf components. The loophole is likely to be present in most QKD
systems using avalanche photodiodes to detect single photons. We believe that
our findings are crucial for strengthening the security of practical QKD, by
identifying and patching technological deficiencies.Comment: Revised version, rewritten for clarity. 5 pages, 5 figures. To
download the Supplementary information (which is in open access), go to the
journal web site at http://dx.doi.org/10.1038/nphoton.2010.21
Left ventricular function at 24 hours, 14 days and 6 months after acute myocardial infarction
To determine the natural history of left ventricular function at rest and during exercise and to assess the impact of this variable on subsequent mortality, 165 patients were studied with radionuclide angiography within 24 hours of acute myocardial infarction. The ejection fraction of the 19 patients who died during the 6 month follow-up was lower than that of the 146 survivals: 41±16% vs 50±13% (P<0.001). Before hospital discharge (14±4 days), 83 patients had a rest and submaximal exercise radionuclide study. The ejection fraction of the 42 patients with anterior infarction was 44±12% and remained unchanged during exercise, while the 41 patients with posterior infarction had a resting value of 54±9% which increased to 57±10% (P<0.001) during exercise. The ejection fraction during exercise increased slightly but significantly in 37/61 patients with single vessel disease, while it did not change in the 24/61 patients with multivessel disease. At a mean of 4±1 months following infarction, 58 patients underwent a symptom-limited exercise radionuclide study. Mean value of resting ejection fraction for the group or anterior-posterior infarction subgroups did not change from initial or predischarge values. The 27 patients with anterior infarction showed no change in ejection fraction during exercise, while the 31 patients with posterior infarction increased their ejection fraction from 53±11% to 57±12% (P<0.001). Thus, ejection fraction measured by radionuclide angiography 24 hours following acute myocardial infarction provides useful prognostic information. Moreover, data collected 14 days and 4 months after infarction indicate that no significant change in ejection fraction occurred at rest or during exercise compared with values at rest for the group as a whole. However, ejection fraction values of patients with posterior infarction or of patients with single vessel disease increased with exercise, indicating that after myocardial infarction the capacity for improvement in myocardial function does exist in those patients who manifest the least extensive ischaemic or necrotic damag
Full-field implementation of a perfect eavesdropper on a quantum cryptography system
Quantum key distribution (QKD) allows two remote parties to grow a shared
secret key. Its security is founded on the principles of quantum mechanics, but
in reality it significantly relies on the physical implementation.
Technological imperfections of QKD systems have been previously explored, but
no attack on an established QKD connection has been realized so far. Here we
show the first full-field implementation of a complete attack on a running QKD
connection. An installed eavesdropper obtains the entire 'secret' key, while
none of the parameters monitored by the legitimate parties indicate a security
breach. This confirms that non-idealities in physical implementations of QKD
can be fully practically exploitable, and must be given increased scrutiny if
quantum cryptography is to become highly secure.Comment: Revised after editorial and peer-review feedback. This version is
published in Nat. Commun. 8 pages, 6 figures, 1 tabl
Experimental Quantum Cryptography with Qutrits
We produce two identical keys using, for the first time, entangled trinary
quantum systems (qutrits) for quantum key distribution. The advantage of
qutrits over the normally used binary quantum systems is an increased coding
density and a higher security margin. The qutrits are encoded into the orbital
angular momentum of photons, namely Laguerre-Gaussian modes with azimuthal
index l +1, 0 and -1, respectively. The orbital angular momentum is controlled
with phase holograms. In an Ekert-type protocol the violation of a
three-dimensional Bell inequality verifies the security of the generated keys.
A key is obtained with a qutrit error rate of approximately 10 %.Comment: New version includes additional references and a few minor changes to
the manuscrip
Fabrication of Sawfish photonic crystal cavities in bulk diamond
Color centers in diamond are quantum systems with optically active
spin-states that show long coherence times and are therefore a promising
candidate for the development of efficient spin-photon interfaces. However,
only a small portion of the emitted photons is generated by the coherent
optical transition of the zero-phonon line (ZPL), which limits the overall
performance of the system. Embedding these emitters in photonic crystal
cavities improves the coupling to the ZPL photons and increases their emission
rate. Here, we demonstrate the fabrication process of "Sawfish" cavities, a
design recently proposed that has the experimentally-realistic potential to
simultaneously enhance the emission rate by a factor of 46 and couple photons
into a single-mode fiber with an efficiency of 88%. The presented process
allows for the fabrication of fully suspended devices with a total length of
20.5 m and features size as small as 40 nm. The optical characterization
shows fundamental mode resonances that follow the behavior expected from the
corresponding design parameters and quality (Q) factors as high as 3825.
Finally, we investigate the effects of nanofabrication on the devices and show
that, despite a noticeable erosion of the fine features, the measured cavity
resonances deviate by only 0.9 (1.2)% from the corresponding simulated values.
This proves that the Sawfish design is robust against fabrication
imperfections, which makes it an attractive choice for the development of
quantum photonic networks.Comment: 7 pages, 9 figure
Antimicrobial susceptibility in E. coli and Pasteurellaceae at the beginning and at the end of the fattening process in veal calves: Comparing 'outdoor veal calf' and conventional operations.
Animal husbandry requires practical measures to limit antimicrobial resistance (AMR). Therefore, a novel management and housing concept for veal calf fattening was implemented on 19 intervention farms (IF) and evaluated regarding its effects on AMR in Escherichia (E.) coli, Pasteurella (P.) multocida and Mannheimia (M.) haemolytica in comparison with 19 conventional control farms (CF). Treatment intensity (-80%) and mortality (-50%) were significantly lower in IF than in CF, however, production parameters did not differ significantly between groups. Rectal and nasopharyngeal swabs were taken at the beginning and the end of the fattening period. Susceptibility testing by determination of the minimum inhibitory concentration was performed on 5420 isolates. The presence of AMR was described as prevalence of resistant isolates (%), by calculating the Antimicrobial Resistance Index (ARI: number of resistance of one isolate to single drugs/total number of drugs tested), by the occurrence of pansusceptible isolates (susceptible to all tested drugs, ARI=0), and by calculating the prevalence of multidrug (≥3) resistant isolates (MDR). Before slaughter, odds for carrying pansusceptible E. coli were higher in IF than in CF (+65%, p=0.022), whereas ARI was lower (-16%, p=0.003), and MDR isolates were less prevalent (-65%, p=0.001). For P. multocida, odds for carrying pansusceptible isolates were higher in IF before slaughter compared to CF (+990%, p=0.009). No differences between IF and CF were seen regarding the prevalence of pansuceptible M. haemolytica. These findings indicate that easy-to-implement measures to improve calf management can lead to a limitation of AMR in Swiss veal fattening farms
Femtosecond Time-Bin Entangled Qubits for Quantum Communication
We create pairs of non-degenerate time-bin entangled photons at telecom
wavelengths with ultra-short pump pulses. Entanglement is shown by performing
Bell kind tests of the Franson type with visibilities of up to 91%. As
time-bin entanglement can easily be protected from decoherence as encountered
in optical fibers, this experiment opens the road for complex quantum
communication protocols over long distances. We also investigate the creation
of more than one photon pair in a laser pulse and present a simple tool to
quantify the probability of such events to happen.Comment: 6 pages, 7 figure
A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes
Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light
detection in atmospheric Cherenkov telescopes. In this paper, the design and
commissioning of a 36-pixel G-APD prototype camera is presented. The data
acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond
time resolution has been achieved. Cosmic-ray induced air showers have been
recorded using an imaging mirror setup, in a self-triggered mode. This is the
first time that such measurements have been carried out with a complete G-APD
camera.Comment: 9 pages with 11 figure
- …