60 research outputs found
High-Temperature Activated AB2 Nanopowders for Metal Hydride Hydrogen Compression
A reliable process for compressing hydrogen and for removing all contaminants
is that of the metal hydride thermal compression. The use of metal hydride
technology in hydrogen compression applications though, requires thorough
structural characterization of the alloys and investigation of their sorption
properties. The samples have been synthesized by induction - levitation melting
and characterized by Rietveld analysis of the X-Ray diffraction (XRD) patterns.
Volumetric PCI (Pressure-Composition Isotherm) measurements have been conducted
at 20, 60 and 90 oC, in order to investigate the maximum pressure that can be
reached from the selected alloys using water of 90oC. Experimental evidence
shows that the maximum hydrogen uptake is low since all the alloys are
consisted of Laves phases, but it is of minor importance if they have fast
kinetics, given a constant volumetric hydrogen flow. Hysteresis is almost
absent while all the alloys release nearly all the absorbed hydrogen during
desorption. Due to hardware restrictions, the maximum hydrogen pressure for the
measurements was limited at 100 bars. Practically, the maximum pressure that
can be reached from the last alloy is more than 150 bars.Comment: 9 figures. arXiv admin note: text overlap with arXiv:1207.354
Research and development of hydrogen carrier based solutions for hydrogen compression and storage
publishedVersio
- …