880 research outputs found

    Using debris disk observations to infer substellar companions orbiting within or outside a parent planetesimal belt

    Full text link
    Aims. We analyze whether the effects of secular perturbations, originating from a substellar companion, on the dust dynamics in a debris disk can be investigated with spatially resolved observations. Methods. We numerically simulated the collisional evolution of narrow and eccentric cold planetesimal belts around a star of spectral type A3V that are secularly perturbed by a companion that orbits either closer to or farther from the star than the belt. Based on the resulting spatial dust distributions, we simulated spatially resolved maps of their surface brightness in the KK, NN, and QQ bands and at wavelengths of 70μ\mum and 1300μ\mum. Results. Assuming a nearby debris disk seen face-on, we find that the brightness distribution varies significantly with observing wavelength, for example between the NN and QQ band. This can be explained by the varying relative contribution of the emission of the smallest grains near the blowout limit. The orbits of both the small grains that form the halo and the large grains close to the parent belt precess due to the secular perturbations induced by a companion orbiting inward of the belt. The halo, being composed of older grains, trails the belt. The magnitude of the trailing decreases with increasing perturber mass and hence with increasing strength of the perturbation, a trend we recovered in synthetic maps of surface brightness by fitting ellipses to lines of constant brightness. Systems with an outer perturber do not show a uniform halo precession since the orbits of small grains are strongly altered. We identified features of the brightness distributions suitable for distinguishing between systems with a potentially detectable inner or outer perturber, especially with a combined observation with JWST/MIRI in the QQ band tracing small grain emission and with ALMA at mm wavelengths tracing the position of the parent planetesimal belt.Comment: Accepted for publication in Astronomy & Astrophysics. 25 pages, 21 figure

    How much large dust could be present in hot exozodiacal dust systems?

    Full text link
    An infrared excess over the stellar photospheric emission of main-sequence stars has been found in interferometric surveys, commonly attributed to the presence of hot exozodiacal dust (HEZD). While submicrometer-sized grains in close vicinity to their host star have been inferred to be responsible for the found near-infrared excesses, the presence and amount of larger grains as part of the dust distributions are weakly constrained. We quantify how many larger grains (above-micrometer-sized) could be present in addition to submicrometer-sized grains, while being consistent with observational constraints. This is important in order to distinguish between various scenarios for the origin of HEZD and to better estimate its observational appearance when observed with future instruments. We extended a model suitable to reproduce current observations of HEZD to investigate a bimodal size distribution. By deriving the characteristics of dust distributions whose observables are consistent with observational limits from interferometric measurements in the KK and NN bands we constrained the radii of sub- and above-micrometer-sized grains as well as their mass, number, and flux density ratios. In the most extreme cases of some of the investigated systems, large grains 10μ\gtrsim 10\,\mum might dominate the mass budget of HEZD while contributing up to 25\,% of the total flux density originating from the dust at a wavelength of 2.13μ\,\mum and up to 50\,% at a wavelength of 4.1μ\,\mum; at a wavelength of 11.1μ\,\mum their emission might clearly dominate over the emission of small grains. While it is not possible to detect such hot-dust distributions using ALMA, the ngVLA might allow us to detect HEZD at millimeter wavelengths. Large dust grains might have a more important impact on the observational appearance of HEZD than previously assumed, especially at longer wavelengths.Comment: Accepted for publication in Astronomy & Astrophysics. 18 pages, 7 figure

    Single centre experience of the application of self navigated 3D whole heart cardiovascular magnetic resonance for the assessment of cardiac anatomy in congenital heart disease.

    Get PDF
    BACKGROUND: For free-breathing cardiovascular magnetic resonance (CMR), the self-navigation technique recently emerged, which is expected to deliver high-quality data with a high success rate. The purpose of this study was to test the hypothesis that self-navigated 3D-CMR enables the reliable assessment of cardiovascular anatomy in patients with congenital heart disease (CHD) and to define factors that affect image quality. METHODS: CHD patients ≥2 years-old and referred for CMR for initial assessment or for a follow-up study were included to undergo a free-breathing self-navigated 3D CMR at 1.5T. Performance criteria were: correct description of cardiac segmental anatomy, overall image quality, coronary artery visibility, and reproducibility of great vessels diameter measurements. Factors associated with insufficient image quality were identified using multivariate logistic regression. RESULTS: Self-navigated CMR was performed in 105 patients (55% male, 23 ± 12y). Correct segmental description was achieved in 93% and 96% for observer 1 and 2, respectively. Diagnostic quality was obtained in 90% of examinations, and it increased to 94% if contrast-enhanced. Left anterior descending, circumflex, and right coronary arteries were visualized in 93%, 87% and 98%, respectively. Younger age, higher heart rate, lower ejection fraction, and lack of contrast medium were independently associated with reduced image quality. However, a similar rate of diagnostic image quality was obtained in children and adults. CONCLUSION: In patients with CHD, self-navigated free-breathing CMR provides high-resolution 3D visualization of the heart and great vessels with excellent robustness

    Disease management at the wildlife-livestock interface: using whole-genome sequencing to study the role of elk in Mycobacterium bovis transmission in Michigan, USA

    Get PDF
    The role of wildlife in the persistence and spread of livestock diseases is difficult to quantify and control. These difficulties are exacerbated when several wildlife species are potentially involved. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, has experienced an ecological shift in Michigan, with spillover from cattle leading to an endemically infected white‐tailed deer (deer) population. It has potentially substantial implications for the health and well‐being of both wildlife and livestock and incurs a significant economic cost to industry and government. Deer are known to act as a reservoir of infection, with evidence of M. bovis transmission to sympatric elk and cattle populations. However, the role of elk in the circulation of M. bovis is uncertain; they are few in number, but range further than deer, so may enable long distance spread. Combining Whole Genome Sequences (WGS) for M. bovis isolates from exceptionally well‐observed populations of elk, deer and cattle with spatiotemporal locations, we use spatial and Bayesian phylogenetic analyses to show strong spatiotemporal admixture of M. bovis isolates. Clustering of bTB in elk and cattle suggests either intraspecies transmission within the two populations, or exposure to a common source. However, there is no support for significant pathogen transfer amongst elk and cattle, and our data are in accordance with existing evidence that interspecies transmission in Michigan is likely only maintained by deer. This study demonstrates the value of whole genome population studies of M. bovis transmission at the wildlife‐livestock interface, providing insights into bTB management in an endemic system

    Dobutamine stress cardiovascular magnetic resonance at 3 Tesla

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The assessment of inducible wall motion abnormalities during high-dose dobutamine-stress cardiovascular magnetic resonance (DCMR) is well established for the identification of myocardial ischemia at 1.5 Tesla. Its feasibility at higher field strengths has not been reported. The present study was performed to prospectively determine the feasibility and diagnostic accuracy of DCMR at 3 Tesla for depicting hemodynamically significant coronary artery stenosis (≥ 50% diameter stenosis) in patients with suspected or known coronary artery disease (CAD).</p> <p>Materials and methods</p> <p>Thirty consecutive patients (6 women) (66 ± 9.3 years) were scheduled for DCMR between January and May 2007 for detection of coronary artery disease. Patients were examined with a Philips Achieva 3 Tesla system (Philips Healthcare, Best, The Netherlands), using a spoiled gradient echo cine sequence. Technical parameters were: spatial resolution 2 × 2 × 8 mm<sup>3</sup>, 30 heart phases, spoiled gradient echo TR/TE: 4.5/2.6 msec, flip angle 15°. Images were acquired at rest and stress in accordance with a standardized high-dose dobutamine-atropine protocol during short breath-holds in three short and three long-axis views. Dobutamine was administered using a standard protocol (10 μg increments every 3 minutes up to 40 μg dobutamine/kg body weight/minute plus atropine if required to reach target heart rate). The study protocol included administration of 0.1 mmol/kg/body weight Gd-DTPA before the cine images at rest were acquired to improve the image quality. The examination was terminated if new or worsening wall-motion abnormalities or chest pain occurred or when > 85% of age-predicted maximum heart rate was reached. Myocardial ischemia was defined as new onset of wall-motion abnormality in at least one segment. In addition, late gadolinium enhancement (LGE) was performed. Images were evaluated by two blinded readers. Diagnostic accuracy was determined with coronary angiography as the reference standard. Image quality and wall-motion at rest and maximum stress level were evaluated using a four-point scale.</p> <p>Results</p> <p>In 27 patients DCMR was performed successfully, no patient had to be excluded due to insufficient image quality. Twenty-two patients were examined by coronary angiography, which depicted significant stenosis in 68.2% of the patients. Patient-based sensitivity and specificity were 80.0% and 85.7% respectively and accuracy was 81.8%. Interobserver variability for assessment of wall motion abnormalities was 88% (κ = 0.760; p < 0.0001). Negative and positive predictive values were 66.7% and 92.3%, respectively. No significant differences in average image quality at rest versus stress for short or long-axis cine images were found.</p> <p>Conclusion</p> <p>High-dose DCMR at 3T is feasible and an accurate method to depict significant coronary artery stenosis in patients with suspected or known CAD.</p

    Enumeration of Mycobacterium avium subsp. paratuberculosis by quantitative real-time PCR, culture on solid media and optical densitometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different approaches are used for determining the number of <it>Mycobacterium avium </it>subsp. <it>paratuberculosis </it>(MAP) cells in a suspension. The majority of them are based upon culture (determination of CFU) or visual/instrumental direct counting of MAP cells. In this study, we have compared the culture method with a previously published F57 based quantitative real-time PCR (F57qPCR) method, to determine their relative abilities to count the number of three different MAP isolates in suspensions with the same optical densities (OD). McFarland turbidity standards were also compared with F57qPCR and culture, due to its frequent inclusion and use in MAP studies.</p> <p>Findings</p> <p>The numbers of MAP in two-fold serial dilutions of isolates with respective OD measurements were determined by F57qPCR and culture. It was found that culture provided lower MAP CFU counts by approximately two log<sub>10</sub>, compared to F57qPCR. The McFarland standards (as defined for <it>E. coli</it>) showed an almost perfect fit with the enumeration of MAP performed by F57qPCR.</p> <p>Conclusions</p> <p>It is recommended to use culture and/or qPCR estimations of MAP numbers in experiments where all subsequent counts are performed using the same method. It is certainly not recommended the use of culture as the standard for qPCR experiments and <it>vice versa</it>.</p
    corecore