14,677 research outputs found

    The circumstellar environment of the FU Orionis pre-outburst candidate V1331 Cygni

    Get PDF
    High resolution (~4") aperture synthesis maps of the CO (1→ 0), ^(13)CO (1→0), ^(13)CO (2→1), and asociated continuum emission from the FU Orions candidate V1331 Cygni reveal a massive, 0.5 ± 0.15 M_☉, circumstellar disk surrounded by a flattened gaseous envelope, 6000 x 4400 AU in size, mass >0.32 M_☉. These images and lower resolution measurements also trace a bipolar outflow and gaseous ring, 4.1 by 2.8 x 10^4 AU, mass greater than or equal to 0.07 M_☉, radially expanding at 22 ± 4 kms^(-1). We suggest this ring is a swept-up gaseous torus from an energetic mass ejection stage, possibly an FU Orionis outburst or outburts, ~4 x 10^3 yr ago that imparted >10^(45) ergs into the ambient cloud

    The FU Orionis binary system RNO 1B/1C

    Get PDF
    Observations of CS (7→6) emission reveal a ≥3M_⊙ core, 1.8×10^4 AU in size, surrounding the FU Orionis binary system RNO 1B/1C. Fractional chemical abundances, calculated from LVG and LTE codes, are mostly similar to those in the cold core TMC 1. However, values for Si0/H_2 and CH_(3)0H/H_2 are enhanced, possibly by sputtering reactions or grain-grain collisions in tile outflow associated with the young stars. Aperture syntllesis maps of tile 2.6 and 3.1 mm continuum emission at ~5" and ~9" resolution, respectively, reveal that RNO 1C is surrounded by a flattened, dusty envelope, ~5000 AU in size, with mass ≥1.1 M_⊙. High spatial resolution (~3") interferometer observations of CS (2→1) emission may trace the dense walls of ail outflow cavity comprised of two concentric arcs with dynamical ages of 4×10^3 and 1×10^4 yr. The velocity structure of lower density gas imaged in the CO (1→0) transition is consistent with the arcs being formed by two energetic FU Orionis outbursts. Each event may have imparted more than 4 M_⊙km s^(-1) to the outflow, implying outburst mass loss rates of ~10^(-4) M_⊙ yr^(-1). It appears that RNO 1C is probably the driving source for the outflow and tllat, while pre-main sequence stars are in tile FU Orionis stage, outbursts may dominate both outflow morphology and energetics

    Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays

    No full text
    The eyes and wings of some species of moth are covered with arrays of nanoscale features that dramatically reduce reflection of light. There have been multiple examples where this approach has been adapted for use in antireflection and antiglare technologies with the fabrication of artificial moth-eye surfaces. In this work, the suppression of iridescence caused by the diffraction of light from such artificial regular moth-eye arrays at high angles of incidence is achieved with the use of a new tiled domain design, inspired by the arrangement of features on natural moth-eye surfaces. This bio-mimetic pillar architecture contains high optical rotational symmetry and can achieve high levels of diffraction order power reduction. For example, a tiled design fabricated in silicon and consisting of domains with 9 different orientations of the traditional hexagonal array exhibited a ~96% reduction in the intensity of the ?1 diffraction order. It is suggested natural moth-eye surfaces have evolved a tiled domain structure as it confers efficient antireflection whilst avoiding problems with high angle diffraction. This combination of antireflection and stealth properties increases chances of survival by reducing the risk of the insect being spotted by a predator. Furthermore, the tiled domain design could lead to more effective artificial moth-eye arrays for antiglare and stealth applications

    Glasgow Common Lodging Houses and the People Living in Them

    Get PDF
    Abstract Not Provided

    The Isospin Distribution of Fragments in Reactions 96Ru+96Ru, 96Ru+96Zr, 96Zr+96Ru, and 96Zr+96Zr at Beam Energy 400 AMeV

    Full text link
    The isospin distribution of particles and fragments in collisions 96Ru+96Ru, 96Ru+96Zr, 96Zr+96Ru, and 96Zr+96Zr at beam energy 400 AMeV is studied with isospin dependent QMD model. We find that the rapidity distribution of differential neutron-proton counting in neutron rich nucleus-nucleus collisions at intermediate energies is sensitive to the isospin dependent part of nuclear potential. The study of the N/Z ratio of nucleons, light charged particles (LCP) and intermediate mass fragments (IMF) shows that the isospin dependent part of nuclear potential drives IMF to be more isospin symmetric and emitted nucleons to be more neutron rich. From the study of the time evolution of the isospin distribution in emitted nucleons, LCP and IMF we find that neutrons diffuse much faster than protons at beginning and the final isospin distribution is a result of dynamical balance of symmetry potential and Coulomb force under the charge conservation.Comment: 10 pages, 5 figure

    Flying heroes of Ecuador's rice fields

    Full text link
    Apple snails (Pomacea spp.) have been a problem for Asian rice farmers for decades. However, the pest was first noticed in 2005, and since then, the snail has spread to most of Ecuador's major rice-growing regions. Losses to the rice sector from apple snails in 2013 alone were estimated at over US$56 million. However, Ecuadorean rice farmers have one big advantage in dealing with apple snails over their Asian counterparts -- the snail kite (Rostrhamus sociabilis), a predatory bird that specialises in eating snails. Meanwhile, Agrocalidad, Ecuador's agricultural extension service, has been working with farmers to control snail damage to rice. However, although Agrocalidad discourages the use of highly toxic insecticides, farmers overwhelmingly use these chemicals, particularly endosulfan, to kill the snails. For scientists, consequently, the events in Ecuador are an opportunity to better understand how snails invade rice and how predators and prey interact with each other

    Surface superconducting states in a polycrystalline MgB2_{2} sample

    Full text link
    We report results of dc magnetic and ac linear low-frequency study of a polycrystalline MgB2_2 sample. AC susceptibility measurements at low frequencies, performed under dc fields parallel to the sample surface, provide a clear evidence for surface superconducting states in MgB2_2.Comment: 4 pages and 5 figure

    Overcoming the false-minima problem in direct methods: Structure determination of the packaging enzyme P4 from bacteriophage φ13

    Get PDF
    The problems encountered during the phasing and structure determination of the packaging enzyme P4 from bacteriophage φ13 using the anomalous signal from selenium in a single-wavelength anomalous dispersion experiment (SAD) are described. The oligomeric state of P4 in the virus is a hexamer (with sixfold rotational symmetry) and it crystallizes in space group C2, with four hexamers in the crystallographic asymmetric unit. Current state-of-the-art ab initio phasing software yielded solutions consisting of 96 atoms arranged as sixfold symmetric clusters of Se atoms. However, although these solutions showed high correlation coefficients indicative that the substructure had been solved, the resulting phases produced uninterpretable electron-density maps. Only after further analysis were correct solutions found (also of 96 atoms), leading to the eventual identification of the positions of 120 Se atoms. Here, it is demonstrated how the difficulties in finding a correct phase solution arise from an intricate false-minima problem. © 2005 International Union of Crystallography - all rights reserved
    • …
    corecore