569 research outputs found
The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite
The effect of sodium species on the physical and catalytic properties of Cu/ZnO catalysts derived from zincian georgeite has been investigated. Catalysts prepared with <100 ppm to 2.1 wt% Na+, using a supercritical CO2 antisolvent technique, were characterised and tested for the low temperature water–gas shift reaction and also CO2 hydrogenation to methanol. It was found that zincian georgeite catalyst precursor stability was dependent on the Na+ concentration, with the 2.1 wt% Na+-containing sample uncontrollably ageing to malachite and sodium zinc carbonate. Samples with lower Na+ contents (<100–2500 ppm) remained as the amorphous zincian georgeite phase, which on calcination and reduction resulted in similar CuO/Cu particle sizes and Cu surface areas. The aged 2.1 wt% Na+ containing sample, after calcination and reduction, was found to comprise of larger CuO crystallites and a lower Cu surface area. However, calcination of the high Na+ sample immediately after precipitation (before ageing) resulted in a comparable CuO/Cu particle size to the lower (<100–2500 ppm) Na+ containing samples, but with a lower Cu surface area, which indicates that Na+ species block Cu sites. Activity of the catalysts for the water–gas shift reaction and methanol yields in the methanol synthesis reaction correlated with Na+ content, suggesting that Na+ directly poisons the catalyst. In situ XRD analysis showed that the ZnO crystallite size and consequently Cu crystallite size increased dramatically in the presence of water in a syn-gas reaction mixture, showing that stabilisation of nanocrystalline ZnO is required. Sodium species have a moderate effect on ZnO and Cu crystallite growth rate, with lower Na+ content resulting in slightly reduced rates of growth under reaction conditions
An external validation of the QCOVID3 risk prediction algorithm for risk of hospitalisation and death from COVID-19: An observational, prospective cohort study of 1.66m vaccinated adults in Wales, UK
Introduction
At the start of the COVID-19 pandemic there was an urgent need to identify individuals at highest risk of severe outcomes, such as hospitalisation and death following infection. The QCOVID risk prediction algorithms emerged as key tools in facilitating this which were further developed during the second wave of the COVID-19 pandemic to identify groups of people at highest risk of severe COVID-19 related outcomes following one or two doses of vaccine.
Objectives
To externally validate the QCOVID3 algorithm based on primary and secondary care records for Wales, UK.
Methods
We conducted an observational, prospective cohort based on electronic health care records for 1.66m vaccinated adults living in Wales on 8th December 2020, with follow-up until 15th June 2021. Follow-up started from day 14 post vaccination to allow the full effect of the vaccine.
Results
The scores produced by the QCOVID3 risk algorithm showed high levels of discrimination for both COVID-19 related deaths and hospital admissions and good calibration (Harrell C statistic: ≥ 0.828).
Conclusion
This validation of the updated QCOVID3 risk algorithms in the adult vaccinated Welsh population has shown that the algorithms are valid for use in the Welsh population, and applicable on a population independent of the original study, which has not been previously reported. This study provides further evidence that the QCOVID algorithms can help inform public health risk management on the ongoing surveillance and intervention to manage COVID-19 related risks
Surface wave tomography across Afar, Ethiopia: crustal structure at a rift triple-junction zone
The Afar Depression in northeast Africa contains the rift triple-junction between the Nubia, Arabia and Somalia plates. We analyze Rayleigh wave group velocity from 250 regional earthquakes recorded by 40 broadband stations to study the crustal structure across Afar and adjacent plateau regions in northern Ethiopia. The dispersion velocities are inverted to obtain surface wave tomographic maps for periods between 5 and 25 seconds, sensitive to approximately the top 30 km of the lithosphere. The tomographic maps show a significant low dispersion velocity anomaly (>20%) within the upper crust, below the site of recent dyke intrusions (2005–present) in the Dabbahu and Manda-Hararo magmatic segments. Similar low velocity regions are imaged where magma intrusion in the Afar crust has been inferred over the last decade from seismicity or volcanic eruptions. We invert two group velocity curves to compare the S-wave velocity structure of the crust within an active magmatic segment with that of adjacent areas; the active region has a low velocity zone (Vs ∼ 3.2 km/s), between about 6–12 km, which we infer to be due to the presence of partial melt within the lower crust
Internet tool to support self-assessment and self-swabbing of sore throat: development and feasibility study
Background:
Sore throat is a common problem and a common reason for the overuse of antibiotics. A web-based tool that helps people assess their sore throat, through the use of clinical prediction rules, taking throat swabs or saliva samples, and taking throat photographs, has the potential to improve self-management and help identify those who are the most and least likely to benefit from antibiotics.
Objective:
We aimed to develop a web-based tool to help patients and parents or carers self-assess sore throat symptoms and take throat photographs, swabs, and saliva samples for diagnostic testing. We then explored the acceptability and feasibility of using the tool in adults and children with sore throats.
Methods:
We used the Person-Based Approach to develop a web-based tool and then recruited adults and children with sore throats who participated in this study by attending general practices or through social media advertising. Participants self-assessed the presence of FeverPAIN and Centor score criteria and attempted to photograph their throat and take throat swabs and saliva tests. Study processes were observed via video call, and participants were interviewed about their views on using the web-based tool. Self-assessed throat inflammation and pus were compared to clinician evaluation of patients’ throat photographs.
Results:
A total of 45 participants (33 adults and 12 children) were recruited. Of these, 35 (78%) and 32 (71%) participants completed all scoring elements for FeverPAIN and Centor scores, respectively, and most (30/45, 67%) of them reported finding self-assessment relatively easy. No valid response was provided for swollen lymph nodes, throat inflammation, and pus on the throat by 11 (24%), 9 (20%), and 13 (29%) participants respectively. A total of 18 (40%) participants provided a throat photograph of adequate quality for clinical assessment. Patient assessment of inflammation had a sensitivity of 100% (3/3) and specificity of 47% (7/15) compared with the clinician-assessed photographs. For pus on the throat, the sensitivity was 100% (3/3) and the specificity was 71% (10/14). A total of 89% (40/45), 93% (42/45), 89% (40/45), and 80% (30/45) of participants provided analyzable bacterial swabs, viral swabs, saliva sponges, and saliva drool samples, respectively. Participants were generally happy and confident in providing samples, with saliva samples rated as slightly more acceptable than swab samples.
Conclusions:
Most adult and parent participants were able to use a web-based intervention to assess the clinical features of throat infections and generate scores using clinical prediction rules. However, some had difficulties assessing clinical signs, such as lymph nodes, throat pus, and inflammation, and scores were assessed as sensitive but not specific. Many participants had problems taking photographs of adequate quality, but most were able to take throat swabs and saliva samples
Correction: Internet Tool to Support Self-Assessment and Self-Swabbing of Sore Throat: Development and Feasibility Study.
[This corrects the article DOI: 10.2196/39791.]
Examining the Evidence for Chytridiomycosis in Threatened Amphibian Species
Extinction risks are increasing for amphibians due to rising threats and minimal conservation efforts. Nearly one quarter of all threatened/extinct amphibians in the IUCN Red List is purportedly at risk from the disease chytridiomycosis. However, a closer look at the data reveals that Batrachochytrium dendrobatidis (the causal agent) has been identified and confirmed to cause clinical disease in only 14% of these species. Primary literature surveys confirm these findings; ruling out major discrepancies between Red List assessments and real-time science. Despite widespread interest in chytridiomycosis, little progress has been made between assessment years to acquire evidence for the role of chytridiomycosis in species-specific amphibian declines. Instead, assessment teams invoke the precautionary principle when listing chytridiomycosis as a threat. Precaution is valuable when dealing with the world's most threatened taxa, however scientific research is needed to distinguish between real and predicted threats in order to better prioritize conservation efforts. Fast paced, cost effective, in situ research to confirm or rule out chytridiomycosis in species currently hypothesized to be threatened by the disease would be a step in the right direction. Ultimately, determining the manner in which amphibian conservation resources are utilized is a conversation for the greater conservation community that we hope to stimulate here
Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.
Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article
Evidence for the exclusive decay Bc+- to J/psi pi+- and measurement of the mass of the Bc meson
We report first evidence for a fully reconstructed decay mode of the
B_c^{\pm} meson in the channel B_c^{\pm} \to J/psi \pi^{\pm}, with J/psi \to
mu^+mu^-. The analysis is based on an integrated luminosity of 360 pb$^{-1} in
p\bar{p} collisions at 1.96 TeV center of mass energy collected by the Collider
Detector at Fermilab. We observe 14.6 \pm 4.6 signal events with a background
of 7.1 \pm 0.9 events, and a fit to the J/psi pi^{\pm} mass spectrum yields a
B_c^{\pm} mass of 6285.7 \pm 5.3(stat) \pm 1.2(syst) MeV/c^2. The probability
of a peak of this magnitude occurring by random fluctuation in the search
region is estimated as 0.012%.Comment: 7 pages, 3 figures. Version 3, accepted by PR
- …