1,573 research outputs found

    A Size of ~10 Mpc for the Ionized Bubbles at the End of Cosmic Reionization

    Full text link
    The first galaxies to appear in the universe at redshifts z>20 created ionized bubbles in the intergalactic medium of neutral hydrogen left over from the Big-Bang. It is thought that the ionized bubbles grew with time, surrounded clusters of dwarf galaxies and eventually overlapped quickly throughout the universe over a narrow redshift interval near z~6. This event signaled the end of the reionization epoch when the universe was a billion years old. Measuring the hitherto unknown size distribution of the bubbles at their final overlap phase is a focus of forthcoming observational programs aimed at highly redshifted 21cm emission from atomic hydrogen. Here we show that the combined constraints of cosmic variance and causality imply an observed bubble size at the end of the overlap epoch of ~10 physical Mpc, and a scatter in the observed redshift of overlap along different lines-of-sight of ~0.15. This scatter is consistent with observational constraints from recent spectroscopic data on the farthest known quasars. Our novel result implies that future radio experiments should be tuned to a characteristic angular scale of ~0.5 degrees and have a minimum frequency band-width of ~8 MHz for an optimal detection of 21cm flux fluctuations near the end of reionization.Comment: Accepted for publication in Nature. Press embargo until publishe

    Dwarf Galaxy Formation Was Suppressed By Cosmic Reionization

    Full text link
    A large number of faint galaxies, born less than a billion years after the big bang, have recently been discovered. The fluctuations in the distribution of these galaxies contributed to a scatter in the ionization fraction of cosmic hydrogen on scales of tens of Mpc, as observed along the lines of sight to the earliest known quasars. Theoretical simulations predict that the formation of dwarf galaxies should have been suppressed after cosmic hydrogen was reionized, leading to a drop in the cosmic star formation rate. Here we present evidence for this suppression. We show that the post-reionization galaxies which produced most of the ionizing radiation at a redshift z~5.5, must have had a mass in excess of ~10^{10.6+/-0.4} solar masses or else the aforementioned scatter would have been smaller than observed. This limiting mass is two orders of magnitude larger than the galaxy mass that is thought to have dominated the reionization of cosmic hydrogen (~10^8 solar masses). We predict that future surveys with space-based infrared telescopes will detect a population of smaller galaxies that reionized the Universe at an earlier time, prior to the epoch of dwarf galaxy suppression.Comment: 19 pages, 3 figures. Accepted for publication in Nature; press embargo until publishe

    Cosmic Hydrogen Was Significantly Neutral a Billion Years After the Big Bang

    Full text link
    The ionization fraction of cosmic hydrogen, left over from the big bang, provides crucial fossil evidence for when the first stars and quasar black holes formed in the infant universe. Spectra of the two most distant quasars known show nearly complete absorption of photons with wavelengths shorter than the Ly-alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift z~6.3, about a billion years after the big bang. Here we show that the radii of influence of ionizing radiation from these quasars imply that the surrounding IGM had a neutral hydrogen fraction of tens of percent prior to the quasar activity, much higher than previous lower limits of ~0.1%. When combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination from the WMAP data, our result suggests the existence of a second peak in the mean ionization history, potentially due to an early formation episode of the first stars.Comment: 14 Pages, 2 Figures. Accepted for publication in Nature. Press embargo until publishe

    Phylogeny of Prokaryotes and Chloroplasts Revealed by a Simple Composition Approach on All Protein Sequences from Complete Genomes Without Sequence Alignment

    Get PDF
    The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists tree of life based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution

    “Am I able? Is it worth it?” Adolescent girls’ motivational predispositions to school physical education: Associations with health-enhancing physical activity

    Get PDF
    The study purpose was to investigate predictive associations between adolescent girls&rsquo; motivational predispositions to physical education (PE) and habitual physical activity. Two hundred girls (age 13.1 &plusmn; 0.6 years) completed the Physical Education Predisposition Scale and the Physical Activity Questionnaire for Older Children. ANCOVAs revealed that girls with the highest Perceived PE Worth and Perceived PE Ability scores were the most habitually active groups (p &lt; .0001). Significant predictors of physical activity identified by hierarchical regression were Perceived PE Ability and body mass index, which accounted for 17% and 3% of variance, respectively. As Perceived PE Ability was strongly associated with physical activity, the correlates of this construct should be further established to inform future school and PE-based interventions. <br /

    Incidence of first stroke and ethnic differences in stroke pattern in Bradford, UK: Bradford Stroke Study

    Get PDF
    Background: Information on ethnic disparities in stroke between White and Pakistani population in Europe is scarce. Bradford District has the largest proportion of Pakistani people in England; this provides a unique opportunity to study the difference in stroke between the two major ethnic groups. Aim: To determine the first-ever-stroke incidence and examine the disparities in stroke patterns between Whites and Pakistanis in Bradford. Methods: Prospective 12 months study consisting of 273,327 adults (≥18 years) residents. Stroke cases were identified by multiple overlapping approaches. Results: In the study period, 541 first-ever-strokes were recorded. The crude incidence rate was 198 per 100,000 person-years. Age adjusted-standardized rate to the World Health Organization world population of first-ever-stroke is 155 and 101 per 100,000 person-years in Pakistanis and Whites respectively. Four hundred and thirty-eight patients (81%) were Whites, 83 (15.3%) were Pakistanis, 11 (2%) were Indian and Bangladeshis, and 9 (1.7%) were of other ethnic origin. Pakistanis were significantly younger and had more obesity (p = 0.049), and diabetes mellitus (DM) (p = <0.001). They were less likely to suffer from atrial fibrillation (p = <0.001), be ex- or current smokers (p = <0.001), and drink alcohol above the recommended level (p = 0.007) compared with Whites. In comparison with Whites, higher rates of age-adjusted stroke (1.5-fold), lacunar infarction (threefold), and ischemic infarction due to large artery disease (twofold) were found in the Pakistanis. Conclusions: The incidence of first-ever-stroke is higher in the Pakistanis compared with the Whites in Bradford, UK. Etiology and vascular risk factors vary between the ethnic groups. This information should be considered when investigating stroke etiology, and when planning prevention and care provision to improve outcomes after stroke

    The geography of recent genetic ancestry across Europe

    Get PDF
    The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.Comment: Full size figures available from http://www.eve.ucdavis.edu/~plralph/research.html; or html version at http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm
    • …
    corecore