2 research outputs found

    A pan-Arctic initiative on the spatial and temporal dynamics of Arctic coasts

    Get PDF
    Permafrost coasts make up roughly one third of all coasts worldwide. Their erosion leads to the release of previously locked organic carbon, changes in ecosystems and the destruction of cultural heritage, infrastructure and whole communities. Since rapid environmental changes lead to an intensification of Arctic coastal dynamics, it is of great importance to adequately quantify current and future coastal changes. However, the remoteness of the Arctic and scarcity of data limit our understanding of coastal dynamics at a pan-Arctic scale and prohibit us from getting a complete picture of the diversity of impacts on the human and natural environment. In a joint effort of the EU project NUNATARYUK and the NSF project PerCS-Net, we seek to close this knowledge gap by collecting and analyzing all accessible high-resolution shoreline position data for the Arctic coastline. These datasets include geographical coordinates combined with coastal positions derived from archived data, surveying data, air and space born remote sensing products, or LiDAR products. The compilation of this unique dataset will enable us to reach unprecedented data coverage and will allow us a first insight into the magnitude and trends of shoreline changes on a pan-Arctic scale with locally highly resolved temporal and spatial changes in shoreline dynamics. By comparing consistently derived shoreline change data from all over the Arctic we expect that the trajectory of coastal change in the Arctic becomes evident. A synthesis of some initial results will be presented in the 2020 Arctic Report Card on Arctic Coastal Dynamics. This initiative is an ongoing effort – new data contributions are welcome

    An emerging international network focused on permafrost coastal systems in transition

    Full text link
    Perennially frozen ground and sea ice are key constituents of permafrost coastal systems, and their presence is the primary difference between temperate and high-latitude coastal processes. These systems are some of the most rapidly changing landscapes on Earth and, in the Arctic, are representative of the challenges being faced at the intersection between natural and anthropogenic systems. Permafrost thaw, in combination with increasing sea level and decreasing sea-ice cover, exposes arctic coastal and nearshore areas to rapid environmental and social changes. Based on decadal timescales, observations in the Arctic indicate an increase in permafrost coastal bluff erosion and storm surge flooding of low-lying ice-rich permafrost terrain. However, circum-arctic observations remain limited and the factors responsible for the apparent increase in arctic coastal dynamics are poorly constrained. A better understanding of permafrost coastal systems and how they are responding to changes in the Arctic is important since a high proportion of Arctic residents live on or near coastlines, and many derive their livelihood from terrestrial and nearshore marine resources. An expanding industrial, scientific, and commercial presence in the Arctic Ocean will also require advanced knowledge about permafrost coastlines as terrestrial access points. Since the issues involved span political, cultural, geographical, and disciplinary borders, an international network focused on permafrost coastal systems in transition is needed. An integrative network focused on permafrost coastal systems is required to realize and address the scale and complexity of the processes, dynamics, and responses of this system to physical, ecological, and social change. A primary focus of such an effort would be guided by the fact that the issues and impacts associated with permafrost coastal systems in transition are far greater than any single institution or discipline is capable of addressing alone. Future permafrost coastal system dynamics will challenge conventional wisdom as the system enters a new state impacting human decision making and adaptation planning, cultural heritage resources and ecosystems, and likely resulting in unforeseen challenges across the Arctic
    corecore