20 research outputs found
Recommended from our members
Water-line design and performance of Z
A new set of bi-plate transmission lines have been designed and installed in the water-section of PBFA-II for the Z-pinch experiments. Thirty-six aluminum flat-plate transmission lines submerged in a water dielectric deliver a timed electrical pulse from coaxial tube sections to a ring stack section. Each of the lines are electrically isolated from each other by transit-time effects. The water-lines are configured radially at four vertical levels. Each level has nine sets of bi-plates, with a transition section that is unique to that level. Mechanically, the bi-plate sections are designed to carry both static and dynamic loads. Electrically, the lines are designed to transport electrical pulses that average 200 nanoseconds with peak voltage of 2.5 to 3.0 MV. The peak fields exceed 200kV/cm. All line sections are a series of chromate coated aluminum plates, broken down into short, light weight sections. The design of the plates was meticulously developed using the Electro code for voltage break down, and NISA for mechanical analysis. Electrical losses associated with impedance mismatching and voltage breakdown were carefully reviewed. Changes in the bi-plate gap, surface shapes and electrical path discontinuities (mechanical joints) were precisely calculated to achieve maximum electrical performance and reliability. Several iterations of surface shapes and line gaps were reviewed to achieve the most desirable characteristics possible. Additional criteria required that minimal time and effort be required to remove and install the water-lines. Special hardware was developed to help meet this requirement
Recommended from our members
Titanium K-Shell X-Ray Production from High Velocity Wire Arrays Implosions on the 20-MA Z Accelerator
The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75{+-}15 to 125{+-}20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7{+-}0.1 to 3.2{+-}0.2 keV and obtained a K-shell emission mass participation of up to 12%
Recommended from our members
Electrical measurement techniques for pulsed high current electron beams
The advent of high current (1 to 100 kA), moderate energy (>10 MeV), short pulse (1 to 100 ns) electron accelerators used for charged particle beam research has motivated a need to complement standard diagnostics with development of new diagnostic techniques to measure electron beam parameters. A brief survey is given of the diagnostics for measuring beam current, position, size, energy, and emittance. While a broad scope of diagnostics will be discussed, this survey will emphasize diagnostics used on the Experimental Test Accelerator (ETA) and Advanced Test Accelerator (ATA). Focus is placed on diagnostics measuring beam current, position and size. Among the diagnostics discussed are resistive wall current monitors, B/sub theta/ loops, Rogowski coils, Faraday cups, and x-ray wire diagnostics. Operation at higher current levels also increases radiation and electromagnetic pulse interference. These difficulties and methods for circumventing them are also discussed
Recommended from our members
Experimental study of finite Larmor radius effects
Linear Z-pinches in Ar, Kr, Xe, N/sub 2/, and He are experimentally studied in regimes where strong finite Larmor radius effects could provide a significant stabilizing effect. Scaling arguments show that for deuterium such a pinch has an electron line density of order 2 x 10/sup 15//cm. For higher Z plasmas a higher line density is allowed, the exact value of which depends on the average ion charge. The pinch is formed by puffing gas axially through the cathode towards the anode of an evacuated pinch chamber. When the gas reaches the anode, the pinch bank is fired. The pinch current rises in 2 to 3 ..mu..sec to a maximum of 100 to 200 kA. The pinch bank capacitance is 900 ..mu..F, and the external inductance is 100 nH. Additionally, the bank is fused to increase dI/dt. The primary diagnostics are a framing camera, a spatially resolved Mach-Zehnder interferometer, and X-ray absorption
Experimental studies of the beam-breakup mode on ETA: comparison with theory
The beam breakup mode has been observed and measured on ETA. Comparison between the measurements and the results of a computer code indicate that the beam breakup instability will be the most important limitation on current transport thru ATA. ETA Experiments that will enable a more accurate determination of the magnitude of the instability on ATA are discussed
Recommended from our members
Beam Breakup (BBU) instability experiments on the Experimental Test Accelerator (ETA) and predictions for the Advanced Test Accelerator (ATA)
In linear accelerators the maximum achievable beam current is often limited by the Beam Breakup (BBU) instability. This instability arises from the interaction of a transversely displaced beam with the dipole modes of the acceleration cavities. The modes of interest have non-zero transverse magnetic fields at the center of the cavity. This oscillating field imparts a time varying transverse impulse to the beam as it passes through the accelerating gap. Of the various modes possible only the TM/sub 130/ mode has been observed on the Experimental Test Accelerator (ETA) and it is expected to surface on the Advanced Test Accelerator (ATA). The amplitude of the instability depends sensitively on two cavity parameters; Q and Z/sub perpendicular//Q. Q is the well-known qualtiy factor which characterizes the damping rate of an oscillator. Z/sub perpendicular//Q is a measure of how well the beam couples to the cavity fields of the mode and in turn, how the fields act back on the beam. Lowering the values of both these parameters reduces BBU growth
Recommended from our members
Initial measurements of beam breakup instability in the advanced test accelerator
This paper reports the measurements of beam breakup (BBU) instability performed on the Advanced Test Accelerator (ATA) up to the end of February, 1984. The main objective was to produce a high current usable electron beam at the ATA output. A well-known instability is BBU which arises from the accelerator cavity modes interacting with the electron beam. The dominant mode is TM/sub 130/ at a frequency of approximately 785 MHz. It couples most strongly to the beam motion and has been observed to grow in the Experimental Test Accelerator (ETA) which has only eight accelerator cavities. ATA has one hundred and seventy cavities and, therefore, the growth of BBU is expected to be more severe. In this paper, BBU measurements are reported for ATA with beam currents of 4 to 7 kA. Analysis showed that the growth of the instability with propagation distance was as expected for the lower currents. However, the high-current data showed an apparent higher growth rate than expected. An explanation for this anomaly is given in terms of a ''corkscrew'' excitation. The injector BBU noise level for a field emission brush cathode was found to be an order of magnitude lower than for a cold plasma discharge cathode. These injector rf amplitudes agree very well with values obtained using the method of differenced B sub solar loops
Dosimetry measurements of x-ray and neutron radiation levels near the shuttle and end beam dump at the advanced test accelerator: Beam Research Program
Electron beams as a source of directed energy are under study at the Lawrence Livermore National Laboratory (LLNL). An intense 10-kA, 50-MeV, 50-ns full-width half-maximum, pulsed electron beam is generated by the prototype Advanced Test Accelerator (ATA) at the Laboratory's Site 300. Whenever the electron beam is stopped in materials, intense radiation is generated. Estimates based on available data in the literature show that for materials such as lead, photon radiation (x ray, gamma, bremsstrahlung) levels can be as large as 10/sup 4/ roentgens per pulse at 1 m in the zero-degree direction (i.e., the electron-beam direction). Neutrons, which are emitted isotropically, are produced at a level of 10/sup 13/ n/m/sup 2/ per pulse. Depending upon the number of pulses and the shielding geometry, the accumulated dose is potentially lethal to personnel and potentially damaging to instrumentation that may be used for diagnostics. To provide shielding for minimizing the risk of exposure to personnel and radiation damage to instrumentation, it is important to determine the x-ray and neutron radiation environment near beamline components such as the beam shuttle dump and beam stop. Photon and neutron dosimetry measurements were performed around the beam shuttle dump on January 9, 1985, and near the carbon beam stop at the end of the beamline before the entrance to the diagnostic tunnel on April 12 and December 23, 1985. These measurements together with simple rule-of-thumb estimates and Monte Carlo electron-photon shower calculations of the absorbed dose are presented in this report. 17 refs., 14 figs., 13 tabs
Recommended from our members
Investigation of the Effects of Waterline Switch Capacitance on the Electrical Prepulse of the Z-Accelerator
The Z-accelerator at the Sandia National Laboratories (SNL) was modified in 1996 to deliver a 20 MA pulse to a z-pinch load in 100 ns. The pulsed-power driver is a 36-module waterline accelerator. Each waterline contains four self-break switches as part of the pulse-forming section. A study was conducted to investigate the effects of increasing the capacitance of the waterline switches on the shape of the electrical prepulse at the load. Past studies have shown that increasing the prepulse at the z-pinch load increases the x-ray output power. In this study, one set of switches with its surrounding waterline hardware was modeled in 3-D and capacitance calculated using the electrostatic code, COULOME. The capacitance values were used in a SCREAMER model of the Z-accelerator. SCREAMER an SNL developed, lumped-element circuit code was used to calculate the time-dependent current waveforms delivered to the z-pinch load. The design was changed and a new capacitance matrix and output waveforms were calculated. This paper presents the results of the COULOMB 3-D modeling, and the SCREAMER circuit-model analyses